Statistical methods in bioinformatics

Brief introduction, statistical models, dimension reductions.

Claus Thorn Ekstrøm

Biostatistics,
University of Copenhagen
E-mail: ekstrom@sund.ku.dk

Principal component analysis

Dimension reduction of the covariates.

Principal component analysis

General algorithm:
(1) Compute the covariance matrix of the predictor data set X.
(2) Calculate the eigenvalues and corresponding eigenvectors of this covariance matrix
(3) The eigenvectors correspond to orthogonal "directions", sort by eigenvalue.

Principal component analysis

General algorithm:
(1) Compute the covariance matrix of the predictor data set X.
(2) Calculate the eigenvalues and corresponding eigenvectors of this covariance matrix
(3) The eigenvectors correspond to orthogonal "directions", sort by eigenvalue.
Reduce dimensionality so pick a unit vector u, and replace each data point with its projection $u^{t} x$.
These new data points have variance $u^{t} \Sigma u$ if Σ was the variance of x. Find u s.t. $u^{t} \Sigma u$ is maximized which is exactly the eigenvector with the largest eigenvalue.

Principal component analysis

Dimension reduction of the covariates.

Principal component regression

- Instead of smoothly shrinking the coordinates on the principal components, PCR either does not shrink a coordinate at all or shrinks it to zero.
- Keep the k largest eigenvalue components and use the k projection on them as input to a GLM.
- Discrete shrinkage effect compared to ridge regression.
- Ridge regression shrinks the coefficients of the principal components, with relatively more shrinkage applied to the smaller components than the larger; principal components regression discards the $p-k$ smallest eigenvalue components.

Example - PCR

5 components
Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	17.9500	1.3270	13.527	$3.05 \mathrm{e}-15$	$* * *$
prPC1	0.3544	0.3245	1.092	0.2824	
prPC2	0.1961	0.3363	0.583	0.5637	
prPC3	-0.1120	0.3397	-0.330	0.7436	
prPC4	-0.6515	0.3486	-1.869	0.0702	
prPC5	0.1130	0.3526	0.320	0.7506	

Residual standard error: 8.393 on 34 degrees of freedom Multiple R-squared: 0.1335,Adjusted R-squared: 0.00606 F-statistic: 1.048 on 5 and 34 DF, p-value: 0.4061

