

Statistical methods in bioinformatics Brief introduction, statistical models, dimension reductions.

Claus Thorn Ekstrøm

Biostatistics, University of Copenhagen E-mail: ekstrom@sund.ku.dk

Dimension reduction of the covariates.

General algorithm:

- Compute the covariance matrix of the predictor data set X.
- 2 Calculate the eigenvalues and corresponding eigenvectors of this covariance matrix
- 3 The eigenvectors correspond to orthogonal "directions", sort by eigenvalue.

General algorithm:

- Compute the covariance matrix of the predictor data set
 X.
- ② Calculate the eigenvalues and corresponding eigenvectors of this covariance matrix
- The eigenvectors correspond to orthogonal "directions", sort by eigenvalue.

Reduce dimensionality so pick a unit vector u, and replace each data point with its projection $u^t x$. These new data points have variance $u^t \Sigma u$ if Σ was the variance of x. Find u s.t. $u^t \Sigma u$ is maximized which is exactly the eigenvector with the largest eigenvalue.

Dimension reduction of the covariates.

Principal component regression

- Instead of smoothly shrinking the coordinates on the principal components, PCR either does not shrink a coordinate at all or shrinks it to zero.
- Keep the k largest eigenvalue components and use the k projection on them as input to a GLM.
- Discrete shrinkage effect compared to ridge regression.
- Ridge regression shrinks the coefficients of the principal components, with relatively more shrinkage applied to the smaller components than the larger; principal components regression discards the p k smallest eigenvalue components.

Example — PCR

5 components

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	17.9500	1.3270	13.527	3.05e-15	***
prPC1	0.3544	0.3245	1.092	0.2824	
prPC2	0.1961	0.3363	0.583	0.5637	
prPC3	-0.1120	0.3397	-0.330	0.7436	
prPC4	-0.6515	0.3486	-1.869	0.0702	
prPC5	0.1130	0.3526	0.320	0.7506	

Residual standard error: 8.393 on 34 degrees of freedom Multiple R-squared: 0.1335,Adjusted R-squared: 0.00606 F-statistic: 1.048 on 5 and 34 DF, p-value: 0.4061