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ABSTRACT: Protein networks have become a popular tool for analyzing
and visualizing the often long lists of proteins or genes obtained from
proteomics and other high-throughput technologies. One of the most
popular sources of such networks is the STRING database, which provides
protein networks for more than 2000 organisms, including both physical
interactions from experimental data and functional associations from
curated pathways, automatic text mining, and prediction methods.
However, its web interface is mainly intended for inspection of small
networks and their underlying evidence. The Cytoscape software, on the
other hand, is much better suited for working with large networks and
offers greater flexibility in terms of network analysis, import, and
visualization of additional data. To include both resources in the same
workflow, we created stringApp, a Cytoscape app that makes it easy to
import STRING networks into Cytoscape, retains the appearance and many of the features of STRING, and integrates data
from associated databases. Here, we introduce many of the stringApp features and show how they can be used to carry out
complex network analysis and visualization tasks on a typical proteomics data set, all through the Cytoscape user interface.
stringApp is freely available from the Cytoscape app store: http://apps.cytoscape.org/apps/stringapp.

KEYWORDS: protein networks, STRING database, Cytoscape, network analysis, network visualization, proteomics data,
functional enrichment

■ INTRODUCTION

Modern high-throughput technologies, including proteomics,
produce an ever growing flow of new data on individual genes
and proteins, which need to be interpreted in light of cellular
context and existing biological knowledge. Protein network
resources, in particular the STRING database,1 have proven
highly useful for providing such context. Indeed, such networks
are very frequently shown in proteomics publications.
The STRING database provides known and predicted

protein−protein associations data for a large number of
organisms, including both physical interactions and functional
associations with confidence scores that quantify their
reliability. In addition to integrating available experimental
data and pathways from curated databases, STRING predicts
interactions based on coexpression analysis, evolutionary
signals across genomes, automatic text-mining of the
biomedical literature, and orthology-based transfer of evidence
across organisms. However, the STRING web interface is not
intended for large networks and provides limited flexibility in
terms of network analysis and visualization, and accessing it

without using the graphical user interface requires familiarity
with programming.
The Cytoscape software,2,3 on the other hand, is designed to

analyze and visualize very large networks and provides much
greater flexibility in terms of import of additional data and
visualization of these onto networks. Moreover, Cytoscape has
hundreds of apps, which users can install to add further
functionality, such as clusterMaker24 that implements
numerous clustering algorithms and PTMOracle5 that allows
PTMs to be analyzed in the context of protein networks.
However, Cytoscape is a general network tool, not a network
database, and as such needs to import its networks from
elsewhere.
Together this makes STRING and Cytoscape a perfect

match, especially for analysis of proteomics data; indeed, more
than thousand papers in PubMed Central mention both
STRING and Cytoscape, clearly demonstrating a strong need
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to integrate them into a single workflow. We have done exactly
that by developing the stringApp, a Cytoscape app that
facilitates import of STRING networks into Cytoscape and
integration with additional user-provided data. At the same
time, the app provides the look and many of the features of the
STRING web interface within Cytoscape. The app supports
several types of queries to retrieve networks starting from
either a list of proteins, a disease of interest from the
DISEASES database,6 or a PubMed query. Moreover, it
provides access to additional data from associated resources,
namely small molecule interactions from STITCH,7 subcellular
localization from COMPARTMENTS,8 tissue expression from
TISSUES,9 and drug target information from Pharos.10

Together, these features enable users to easily carry out
complex network analysis and visualization tasks, all through
the graphical user interface of Cytoscape. In a typical use case,
we demonstrate how a proteomics data set can be analyzed and
visualized with the help of the stringApp and Cytoscape.

■ METHODS

Data Sources Used by StringApp

The stringApp retrieves information collected from several
source databases. The protein network is imported from the
current STRING v10.51 and augmented with protein−
chemical and chemical−chemical associations from the current
STITCH version 5.7 This is complemented by drug-target
classification from the current release of Pharos10 and
information on disease associations, tissue expression, and
subcellular localization from the weekly updated databases
DISEASES,6 TISSUES,9 and COMPARTMENTS.8

Although these databases all provide Application Program-
ming Interfaces (APIs), we mirror the data from the current
production versions of STRING and STITCH in a dedicated
PostgreSQL database on the same server that already hosts
DISEASES, TISSUES, and COMPARTMENTS. This is done
both to provide additional functionality over the existing APIs
and to allow stringApp to efficiently retrieve all information for
a protein network with a single API request.
Algorithms Implemented at the Database Level

Another major benefit of having all data available in a single
database is that it allows us to implement certain algorithms, as
described below, at the database level. Instead of first loading
large amounts of data from one or more databases into
memory and then executing the algorithms, we were able to
implement the algorithms in Structured Query Language
(SQL) and execute them directly within the PostgreSQL
database engine. We made use of this approach for two
algorithms used by stringApp.
Network Expansion. This algorithm adds N additional

nodes to the network based on their total connectivity to a
current selection of nodes (X) relative to their overall
connectivity in the STRING database (if no nodes are
selected, the complete network is considered as the selection).
All nodes not currently in the network are ranked according to
the following score:
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where sij is the confidence score between the node i (to be
considered for inclusion in the network) and the node j (in the
current selection of nodes (X)), while the sum over sik captures

the connectivity of node i to all other nodes k in the database.
The parameter α is called the selectivity in the stringApp user
interface (Expand network option) and has a default value of
0.5. This value gives a good trade-off between choosing nodes
that have high confidence links to the selection but possibly
also to many other proteins (low selectivity), and choosing
nodes that are specifically linked to the selected nodes but with
lower confidence (high selectivity). The sum in the
enumerator is calculated on-the-fly using SUM aggregate
function in SQL, whereas the sum in the denominator has
been precalculated for all nodes in the aforementioned
database. We can thus with a single SQL command score all
candidate nodes, rank them, and return the top N.

PubMed Query. The second algorithm implemented in
SQL is used to retrieve a network based on a PubMed query.
The app sends the user-specified query to the PubMed API to
retrieve the set (X) of matching PMIDs, selects the top N
entities that are preferentially mentioned in X, and finally
retrieves the network for them. To rank the entities, we use the
following scoring function:
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where δij is 1 if the molecular entity i is mentioned in abstract j
and 0 otherwise, while δik is 1 if the molecular entity i is
mentioned in any abstract k in PubMed and 0 otherwise. The
parameter β is fixed to a value of 0.4 based on previously
published text-mining experiments.6 It serves a similar purpose
to the selectivity described above, controlling the trade-off
between choosing entities that are mentioned in as many of the
selected abstracts as possible but possibly also in many other
abstracts vs choosing entities that are specifically mentioned
only in the selected abstracts. Given the similarity of this
formula to the one used for network expansion, it should come
as no surprise that it too can be implemented as a single SQL
command that calculates the enumerator using the COUNT
aggregate function, whereas the denominator has been
precalculated for all pairs of entity and abstracts in the
aforementioned database.

Implementation of the App

The stringApp is implemented in Java utilizing the Cytoscape
3.6 App API. The app has two main functions: (1) to serve as a
bridge between Cytoscape and the web service APIs of
STRING and the related databases, and (2) to provide
visualizations resembling the ones on the STRING web server
as well as additional features like the side panel and enrichment
visualizations. These two functions work together to bring
much of the richness of the STRING website into Cytoscape,
which then allows the network and all associated data to be
analyzed with Cytoscape and its hundreds of other apps. For
instance, the clusterMaker2 app4 can be very useful for
clustering STRING networks, as shown in the use case below.
The bridge functionality of the stringApp uses several

RESTful11 web service APIs to query the databases and
retrieve networks. In case of protein and protein/compound
queries, the app first resolves the entered query terms to the
internal database identifiers using the standard STRING and
STITCH API. For disease queries, it instead contacts the API
of the DISEASES database twice, first to resolve the entered
disease name to a disease identifier, and second to retrieve the
list of proteins associated with the disease. For all three types
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of queries, stringApp provides the user with the ability to
manually resolve any ambiguous names. The handling of
PubMed queries was described in the previous section.
Irrespective of the type of query, these steps result in a list
of nodes, for which stringApp retrieves all node and edge data
by calling the web service API of the dedicated PostgreSQL
database. The latter API is also used to retrieve any node or
edge data required when expanding an existing network,
lowering the confidence cutoff, or adding additional nodes to a
network.
The stringApp retrieves functional enrichment analysis

results for a whole STRING network or a selected subset of
it by sending a request to the STRING enrichment API. The
results are stored and shown in a Cytoscape table called
STRING Enrichment, which lists all enriched terms along with
their gene counts, corresponding FDR values, and gene sets.
Since the list of enriched terms can become very long,
especially for large networks, the app allows the user to filter
the enrichment results to show terms from any combination of
six term categories as well as to eliminate redundant terms,
which represent similar sets of genes.

The redundancy filtering takes the list of enriched terms
sorted by FDR value and removes the terms that are too
similar to any of the previous, better scoring terms that were
not themselves removed (also referred to as the Hobohm 1
method12). The similarity between two terms is measured by
the Jaccard index of the sets of genes annotated by the two
terms. A term is added to the filtered list only if it has Jaccard
similarity less than the user-specified redundancy cutoff to any
other term already in the filtered list.
To retain the look and feel of STRING networks, the

stringApp adds a new STRING Visual Style to the already
existing set of Cytoscape styles. This style enables the glass ball
effect and the optional visualization of the protein or
compound structures within the nodes. These visual properties
can be enabled or disabled by the user from the stringApp
menu. The initial node colors are assigned arbitrarily by the
app but can be easily substituted by a node color mapping of
any node attribute. In addition to the node visual properties,
the STRING style also includes a mapping of the interaction
confidence scores to edge color and thickness.

Table 1. Main StringApp Features with Corresponding Inputs and Outputs
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Specific Data and Software for the Use Case

The proteomics data used in the case study were obtained
from a phosphoproteomics study of ovarian cancer13

(specifically Supplementary Table 3 of the study). The list of
proteins used to retrieve the network was extracted from the
significantly regulated phosphorylation sites listed in this table.
Furthermore, log-ratios of abundance in disease versus healthy
tissues were computed based on the average abundance values
over the samples listed in the same table. To facilitate the
subsequent visualization in Cytoscape, we also modified the
Supplementary Table 3 by keeping only the significantly
regulated phosphorylation sites and sorting them by
significance. This modified version of the table, which was
imported into Cytoscape, is provided as Table S1.
During import of the associated log-ratios and phosphor-

ylation cluster assignments, the most significant phosphor-
ylation site was chosen whenever multiple sites were found on
the same protein (by first sorting the table based on “Gene
name” and then on “adj. p-value”).
All analyses were performed on the 12th of April 2018 using

Cytoscape version 3.6.1 and stringApp version 1.3.2 and are
provided in a Cytoscape session (https://doi.org/10.6084/m9.
figshare.7258235). Additionally, we used clusterMaker2
version 1.2.1 to perform Markov clustering (MCL)14 of the
protein network and EnhancedGraphics version 1.2.015 to
enable stringApp visualization of enriched terms as circular
plots onto the network nodes.

■ RESULTS

Presentation of the StringApp

The stringApp was designed to serve as a bridge between two
well-known and widely used resources, the STRING database
for quality-controlled protein−protein association networks
and the Cytoscape software platform for network data
integration, analysis and visualization. Thus, the core purpose
of the stringApp is to retrieve network data from STRING,
import it into Cytoscape and retain the look and most of the
functionality of the STRING database, while at the same time
allowing users to analyze the network with the full set of
Cytoscape features and integrate it with their own data.
Nevertheless, stringApp also imports protein−protein inter-
actions from STRING for a disease or PubMed query of
interest as well as protein−chemical interaction data from
STITCH. A list of the main stringApp features can be found in
Table 1.
Currently, four different types of queries are supported by

the stringApp, which allow users to retrieve a STRING
network starting from (1) a list of one or more genes/proteins,
(2) a list of chemical compounds, (3) a disease, or (4) a
PubMed query. Additionally, the user can choose the species of
interest and the confidence cutoff for the interactions to be
retrieved. The STRING: protein query obtains a STRING
network for an arbitrarily long list of proteins and can be used,
for example, to retrieve a STRING network for a proteomics or
transcriptomics study. In a similar manner, the STITCH:

Figure 1. Highlighting various stringApp features in a screenshot of a small STITCH network in Cytoscape. Edge colors indicate type of interaction
(green for protein-compound and gray for protein−protein interactions) and node colors are arbitrary. The results panel (right) shows the 3D
structure of the currently selected node CDK7 (indicated by yellow node color) and provides links to other related resources. The STRING
enrichment table panel (bottom) lists the enriched terms for this network (FDR-corrected p-value <0.05) with their category, term name
description, FDR-corrected p-value and the enriched genes. The Filter STRING Enrichment table dialog (left) demonstrates the available options
for filtering enriched terms by category and redundancy.
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protein/compound query obtains a network for a list of protein
or chemical compound names from STITCH as shown in
Figure 1. The STRING: disease query first queries the
DISEASES for the top-N human proteins associated with the
disease specified by the user and then retrieves a STRING
network for these. The STRING: PubMed query allows users to
get a STRING network for any topic of interest by first
querying PubMed for abstracts pertaining to the topic, then
using text mining on these abstracts to identify the top-N
proteins associated with the topic, and retrieving a STRING
network for these.
Similar to the STRING database query interface, stringApp

supports single- or multiprotein queries and many different
types of names and identifiers, including gene symbols and
UniProt identifiers/accession numbers. The STRING dis-
ambiguation service is used to map the query proteins to the
internal STRING identifiers and the exact query term that
matched each protein is stored as a node attribute in the
resulting STRING network in Cytoscape. This is particularly
helpful when querying with lists of proteins or genes coming
from a proteomics or transcriptomics study, since it facilitates

subsequent import of tabular data from the same study (as
demonstrated in the use case and in Figure 2 and 3).
In addition to the interactions from STRING/STITCH,

stringApp retrieves a variety of related information, which is
stored as node and edge attributes for each protein/chemical
or interaction, respectively. The node attributes include the
STRING and UniProt accession numbers, which allow for
cross-linking with other resources, a human-readable name for
display purposes, the protein sequence or a chemical SMILES
string, and a structure image where possible. The edge
attributes include the overall confidence score of each
interaction as well as the subscores from each individual
evidence channel in STRING/STITCH. Whenever available
for the organism in question, information on the tissue
expression and subcellular localization of each protein is
included from the TISSUES and COMPARTMENTS data-
bases. Furthermore, stringApp fetches drug target information
from Pharos. If a protein was retrieved through a disease query
or PubMed query, the corresponding confidence score for the
disease−gene association according to DISEASES or text-
mining score (see Methods) are included as node attributes. As
shown in Figure 1, stringApp also provides a results panel in

Figure 2. STRING network of proteins with significantly regulated phosphorylation sites detected in a phosphoproteomics study of ovarian
cancer.13 Log-ratios between disease and healthy tissues for the most significant site for each protein were mapped to the nodes using a blue−
white−red gradient. Proteins without any interaction partners within the network (singletons) are omitted from the visualization.
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Cytoscape, which shows the protein or compound structure of
a selected node as well as links to other related resources,
including UniProt,16 GeneCards,17 COMPARTMENTS,
TISSUES, and Pharos.
Once a STRING/STITCH network is in Cytoscape, it can

be modified in several ways. First, users can expand the
network with the nodes that are most strongly connected with
the nodes currently in the network or with a selected subset of
them (see Methods for details on the underlying algorithm).
These new nodes can be either proteins from STRING or
chemical compounds from STITCH. Second, it is possible to
add specific new nodes to the network by providing their
names just like in the original query. Third, users can change
the confidence cutoff of the imported interactions; increasing it
filters the current network to remove edges that do not pass
the new cutoff, whereas decreasing it will requery the server to
fetch the additional interactions, that did not pass the original
cutoff.
Network analysis and functional enrichment analysis are

complementary methods to gain an overview of a long gene or
protein list. The stringApp allows users to combine the two, by
first performing an enrichment analysis and subsequently
visualizing the results onto a STRING network. To do so, the
user specifies the enrichment significance threshold (with
default value of 0.05). Then, enriched Gene Ontology terms,
KEGG Pathways, and protein domains are retrieved from the
STRING enrichment web service and shown as a table (see
example in Figure 1). From the table, the user can then
optionally filter the enrichment results to reduce redundancy
(see Methods for details) and visualize the top terms onto the

network as donut or pie charts using ColorBrewer18 palettes to
distinguish the different terms.

Use Case: Analysis of a Phosphoproteomics Data Set

To illustrate some of the more important features of stringApp
that are relevant to analysis of proteomics data, we have chosen
a typical data set resulting from a phosphoproteomics study of
ovarian cancer by Francavilla et al.13 published in 2017. In this
study, the authors compare the phosphoproteome of primary
cells derived from epithelial ovarian cancer (EOC) and two
healthy tissues, namely ovarian surface epithelium (OSE) and
distal fallopian tube epithelium (FTE). The aim of the study
was to uncover cancer-specific changes in expression,
phosphorylation state, and kinase signatures.
In the following sections, we will go through how this data

set can be analyzed and visualized in a variety of ways using the
stringApp and Cytoscape. Starting with the list of proteins with
significantly regulated phosphorylation sites in the study, we
first retrieve the corresponding STRING network in Cyto-
scape. Then, we import data from the study, namely the log-
ratios of phosphorylation between disease cells and healthy
tissues and the phosphorylation cluster assignments, to be able
to visualize them on the network nodes. To gain insight from
the resulting highly connected protein network, we partition it
using a clustering algorithm and relay out the network. The
largest identified cluster turns out to be highly relevant to the
main findings of the study since it contains both CDK7 and
POLR2A as well as many splicing related proteins. The study
by Francavilla et al. showed that CDK7 phosphorylates
POLR2A and regulates EOC cell proliferation, and that
peptides in proteins with splicing variants were over-

Figure 3. Clustered protein association network with proteins colored by the phosphorylation cluster to which they were assigned in the original
analysis.13 Network clustering was performed using the Markov clustering (MCL) implementation in the clusterMaker2 Cytoscape app. The 13
proteins associated with Ovary epithelial cancer according to DISEASES are represented by bigger nodes. Clusters consisting of one node only are
omitted from the visualization.
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represented in the EOC proteome. We thus focus on this
cluster, analyze it for enriched functional terms, and visualize
selected terms on the network. Finally, we highlight the
proteins from the study that are annotated as druggable targets
in the Pharos database or associated with EOC according to
the DISEASES database.
Network Retrieval and Data Import

The first step of the analysis is to retrieve a STRING network
for the 541 unique proteins with significantly regulated
phosphorylation sites. This is done by opening the Import
Network f rom Public Databases dialog, choosing STRING:
protein query, entering their UniProt accession numbers into
the dialog, and leaving all query parameters at their default
values. The resulting network retrieved from STRING 10.5
consists of 537 nodes and 3027 edges with the default
confidence score of 0.4 and above, which is consistent with the
default of the STRING website. Four proteins in the data set,
three of which were unreviewed TrEMBL entries, could not be
mapped to STRING identifiers by the app and were thus not
included in the further analysis. To simplify the figures, we also
opted to delete the 78 singleton nodes, i.e., the proteins with
no interactions in the retrieved network.
To add data from the proteomics study to the STRING

network, we import the modified version of Supplementary

Table 3 from Francavilla et al. (Table S1) using the built-in
functionality of Cytoscape to import data columns from a
tabular file. In this step it is crucial to correctly choose which
column from the file should be mapped to which column in the
Cytoscape node table; if the identifiers do not match, the data
will not be imported. To facilitate this mapping, stringApp
saves the user-provided query identifiers in the “query term”
column in the Cytoscape Node table. In this use case, the
UniProt identifiers from the “Uniprot” column in Table S1
were used to retrieve the STRING network and therefore, this
is the column that should be selected as the “Key” column in
the table preview in the Table import dialog. Since these
identifiers were stored in the “query term” column in the
Cytoscape Node table, it should be selected as the “Key
Column for Network” in the Import table dialog. Upon
successful import of the data, the new columns are inserted at
the end of the Cytoscape Node table. Here, we import the
average log-ratios between disease and healthy tissue (“EOC
vs. EOS&FTE” column) and the phosphorylation cluster
assignments (“Cluster” column).
Network Layout and Visual Mapping of Data

Having imported the proteomics data, we can map it onto the
nodes in the network using the Cytoscape Visual Styles
functionality. Numeric data such as the log ratios between

Figure 4. Functional analysis of the largest cluster obtained by Markov clustering (Figure 3). The top-2 enriched terms after redundancy filtering
were visualized as split donut charts around the nodes annotated with those terms. CDK12 is highlighted by bigger node size because it is
associated with Ovary epithelial cancer according to DISEASES. The three kinases CDK7, CDK12, and CDK13 are highlighted in green based on
annotations from the Pharos database.
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disease and healthy tissues are best shown using a continuous
mapping of the values to a color gradient. Here, we use a blue−
white−red color gradient to highlight nodes with low or high
log ratios (Figure 2). Categorical data such as the
phosphorylation cluster assignments should be represented
by a discrete color mapping, which assigns a different color to
each category (Figure 3). Mappings between visual properties
and attributes can also be created for edges; the default
STRING visual style uses this to show edges with higher
confidence scores as thicker, darker lines.
Network visualization of large proteomics data sets is

challenging for several reasons. First, these networks tend to be
large, typically consisting of hundreds to thousands of proteins
with thousands to tens of thousands of interactions between
them as exemplified by Figure 2. Visualizing large, dense
networks in a way that reveals the patterns within them, such
as groups of similarly regulated proteins, is inherently
difficult.19 Second, whereas a single comparison of two
conditions is easily visualized using a color gradient, many
proteomics studies, including the one used in this example,
compare multiple conditions or time points.

Using Clustering to Improve Visualization

Clustering can be a powerful strategy to visualize multidimen-
sional data on large networks. In Cytoscape, a broad selection
of clustering algorithms are available through the widely used
clusterMaker2 app.4 This app can cluster the nodes in the
network both based on the edges that connect them (network
clustering) and based on numeric data from the Cytoscape
Node Table (attribute clustering). We could thus have used the
attribute-clustering algorithms in clusterMaker2 to identify
groups of proteins that exhibit similar changes in phosphor-
ylation. However, in this use case we instead opted to import
the phosphorylation cluster assignments from the original
study as described in the previous section.
To group the proteins in the network based on their

interactions from STRING, we used clusterMaker2 to run
Markov clustering (MCL).14 We increased the inf lation value
to 4.0 to reduce the cluster size, set array sources to use the
STRING confidence score attribute as weights, checked the
option to create new clustered network, and left all other settings
at their default. The resulting network is greatly simplified and
much easier to visualize, since only the 1058 interactions
within clusters are retained (Figure 3). Finally, to visualize how
the proteins are regulated, we color the nodes based on the
phosphorylation cluster they were assigned to; cluster A (blue)
is up-regulated in both healthy tissues (FTE and OSE), cluster
B (yellow) is up-regulated in one healthy tissue (FTE) and in
disease tissue (EOC); and cluster C (red) is up-regulated in
disease tissue (EOC). For comparison, we also provide the
same network colored by log ratios between disease and
healthy tissues (Figure S1).

Functional Enrichment Analysis

In the last parts of the use case we will focus on the largest
cluster in the network, which consists of 62 proteins and relates
several of the findings of the original study. We thus created a
new, separate network in Cytoscape that consists only of this
cluster.
To functionally characterize the cluster, we used stringApp

to perform functional enrichment analysis with an FDR
threshold of 5%, which resulted in a list of 129 statistically
significant terms that span all six categories: GO Biological
Process, GO Molecular Function, GO Cellular Component,

KEGG Pathways, PFAM, and InterPro protein domains. We
next used the filter functionality to eliminate redundant terms
(using the default redundancy cutoff of 0.5), thereby reducing
the list to a more manageable 38 enriched terms. Of these, the
two most significant terms were the GO biological process
mRNA processing and the KEGG pathways Spliceosome, which
covered 39 and 20 out of the 62 proteins in the cluster,
respectively. To show which proteins are annotated with which
of these terms, we used the stringApp to visualize them as a
split donut charts around the nodes (Figure 4). These
enrichment results fit well with the finding by Francavilla et
al.13 that peptides from proteins with splicing variants were
overrepresented among EOC-regulated phosphorylated pep-
tides. Moreover, the same cluster contains the protein
POLR2A, the phosphorylation of which has been associated
with both transcriptional regulation and alternative splicing.20

Annotation of Disease-Associated Proteins and Drug
Targets

The stringApp automatically retrieves drug target information
from the Pharos database into the “target development level”
and “target family” columns of the Cytoscape Node table. The
latter column includes annotations of known kinases and other
drug target families. Using the discrete mapping functionality
of Cytoscape, one can highlight the kinases (and other drug
target families) by assigning different colors to the correspond-
ing nodes (see Figure 4). The cluster contains 3 of the 22
kinases present in the full network, including CDK7 that the
study showed phosphorylates POLR2A and thereby likely
regulates the processes identified in the enrichment analysis.
Finally, to annotate the network with proteins already

associated with EOC, we use the STRING: disease query
functionality of stringApp to import a STRING network of the
top 500 candidate disease genes according to the DISEASES
database. The confidence scores of the associations between
these genes and EOC range from 0.69 to 2.66 on a scale from 0
to 5. As a compromise between confidence and coverage, we
decided to keep only genes with a disease confidence score
above 1.0, resulting in a network of 222 genes likely associated
with EOC. We then identified the proteins from the
DISEASES network in the study network by first creating
the union of the two networks using theMerge Networks tool in
Cytoscape and then removed all nodes not coming from the
study. In the resulting network, the node attribute disease score
marks all proteins associated with EOC according to the
DISEASES database, which we used to highlight them as
bigger nodes (see Figure 3 and 4).

■ DISCUSSION

Scope of the StringApp

In our use case, we have illustrated how many of the features of
stringApp (see Table 1 for a more comprehensive list) and
Cytoscape can be used to analyze and visualize a proteomics
study of human cells. However, this does not showcase the full
scope of the app.
The current version of STRING provides functional

association networks for more than 2000 different organisms,
all of which can be accessed through stringApp. Moreover, the
app can equally well be used to visualize other types of high-
throughput experiments that give rise to a list of genes or
proteins. This is true for transcriptomics data, which can be
imported and visualized on a network by following the same
steps we showed for proteomics data, as well as for phenotypic
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screens and mutation data. For example, the stringApp has
already been used in the literature for network analysis of
microarray data on the mammalian circadian pacemaker21 and
for comparing a coexpression network obtained from maize
RNA-seq data to a network from STRING.22

One key feature of the stringApp, which was not used in the
use case, is the ability to expand a network. This uses the
STRING network as a whole to bring in additional proteins
that were not initially identified, but which may be of interest
because they are preferentially associated with the proteins on
the initial list. In case of phosphoproteomics data, this can be
used to identify proteins that may not themselves be regulated
through phosphorylation, but which function together with
proteins that are.
While users can import their own data, it is worth noting the

stringApp also automatically augments the network with tissue
expression data and information on protein subcellular
localization. Without having to provide any data, it is thus
possible for users to visualize which proteins localize to a
certain tissue or part of the cell. The data can also be highly
useful for filtering networks to produce, for example, a protein
network for a specific tissue of interest.
The stringApp is thus also useful beyond analysis of user-

provided high-throughput data. For example, one can easily
perform a disease query to retrieve a network of proteins
known to be involved in a given disease, use network
expansion to obtain novel candidates, filter them by expression
in disease-relevant tissues, and highlight the druggable targets
from Pharos.

Automation of Analyses

In addition to having a graphical user interface, which we have
focused on in this paper, the stringApp also supports the
Cytoscape Automation feature, which allows scripted execu-
tion of STRING analyses within Cytoscape. This command
interface can be used in a variety of ways. First, it is accessible
through the Command Tool, which provides an interactive
command line as well as the ability to execute Cytoscape script
files. Second, the commands can be used from web pages
viewed in the built-in Cytoscape web browser, as illustrated in
the online stringApp training material (https://jensenlab.org/
training/stringapp/). Third, the cyREST app23 enables other
programs to control Cytoscape through an API, which in turn
allows stringApp analyses to be scripted from R using the
BioConductor package RCy324 or from Python using package
py2cytoscape.23 A tutorial on the latter can be found in the
Cytoscape Automation training material (https://git.io/
RstringAppTutorial).

Open Challenges in Network Visualization of Proteomics
Data

There are still several open challenges in network visualization
of MS-based proteomics data, which are in no way specific to
stringApp but also not addressed by it.
The proteolytic cleavage of the proteins, typically with

trypsin, results in peptides that do not map uniquely to specific
proteins. Instead, these peptides are generally mapped to so-
called protein groups, which consist of multiple proteins from
which the peptides could have originated. How to best
represent this ambiguity in a protein network is not clear;
options include choosing a single representative protein for
each group, showing all proteins from each group, or
constructing network nodes that fuse all interaction evidence
for the proteins in a protein group.

Another challenge relates specifically to data on post-
translational modifications. Since each protein can have
multiple post-translational modifications on different sites, an
MS data set may show that some sites on a protein are up-
regulated while others are down-regulated. Since a protein
network will have only a single node for each protein,
visualization of site-specific data requires multiple values to be
shown on each node, for example, in the form of a donut plot.
However, this visualization will result in information overload
if used directly on large networks. Visualization of networks
with complex data overlays, such as time courses or site-
specific data, might be achieved by separating the data from the
network view and using interactive techniques to identify
subnetworks of interest.25
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