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Summary so far

So far we have mainly considered two situations:

1 Large number of outcomes, few predictors.

2 One outcome, large number of predictors.
• GWAS, gene expression, lasso, pca, ...

• For example: Networks, (could swap
outcome/predictors), ...
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Summary so far

• General techniques

• Networks and text mining

• GWAS and genomics

• RNA
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The omics revolution
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Revisiting correlation

The Pearson correlation between to quantitative variables, X ,
and Y is

ρ̂ =
∑
n
i=1(xi − x̄)(yi − ȳ)√

(∑
n
i=1(xi − x̄)2)(∑

n
i=1(yi − ȳ)2)

Measures the linear relationship between X and Y .
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Revisiting correlation
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Next generation correlation = MIC ?

Can we do something more advanced than simple
correlations? Maximum information correlation
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Example — from MIC paper
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dCor — distance correlation matrix

Produces a measure of variable dependence: From 0
(corresponds to statistical independence) to 1 (no noise).

• Produces number between 0 and 1

• Can have different dimensions (but requires same N)

• Can detect both linear and non-linear dependence

• Approximates standard Pearson correlation coefficient
when relationship is roughly linear.
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dCor
> library("energy") # Pearson cor: -0.068

> cor(x,y); dcor(x, y) # dcor = 0.2291
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Computing dCor

Compute the distance correlation between X ∈ RN
k and

Y ∈ RN
j .

1 Compute matrix of Euclidian distances between N cases
for X and Y .

2 Perform double centering for each matrix

3 Multiply the matrices element-wise and compute sum.

4 Divide by N2 (ie, compute average).

5 Take square root. This is the distance covariance.

6 Variances can be computed for each matrix against itself.

7 The distance correlation is computed similarly to the
Pearson correlation.
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Computing dCor

(X ,Y ) = [(0,0),(0,1),(1,0),(1,1)]
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Inference

What about inference?

For a given pair of high-dimensional variables:

• Compute a modified version of the distance correlation.

• Use dcorT.test()
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NGS / RNA-seq
Microarrays are limited in what we can find as we can only
measure intensities of the probes already on the array.

High-throughput DNA sequencing methods / next-generation
sequencing
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Gene variant calling
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NGS technologies

Recall from yesterday:

1 Align sequenced fragments with reference sequence
(alternatively make de novo assembly).
• really a non-trivial task, but will not go into details.

abundance.

2 Count the number of fragments mapping to certain
regions
• usually genes
• The read counts linearly approximate target transcript

abundance.

A large number of short DNA fragments. The reads are then
used for several applications, e.g., sequence reconstruction,
DNA assembly, gene expression profiling, mutation analysis.
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Normalization

Number of reads are approximately proportional to length of
transcript, the total number of mapped reads.

Typically considering the reads per kilobase per million reads
(RPKM) or variations on this theme.

1 Count up the total reads

2 Divide by 1,000,000 ⇒“per million” scaling factor to
normalize for sequencing depth (RPM)

3 Divide the RPM values by the length of the gene, in
kilobases. This gives you RPKM.
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Modeling read counts

Back to the linear model?

counti = Xβ + εi

Assumption of continuous data for each gene. But they really
are counts (discrete) and relatively infrequent.

Let Ni be total number of fragments counted in sample i ,
and pi the probability that a fragment matches a particular
gene of interest.
The observed number of reads for gene in sample i is

Ri ∼ Poisson(Nipi )

Note: E(Ri ) = Var(Ri ) = Nipi .
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Modeling read counts

Wish to, say, compare two groups: cases and controls?
Assume log(pi = α + βxi ), where xi is 0 (controls) or 1
(cases).

Generalized linear model (Poisson regression):

log(E(Ri )) = log(Ni )︸ ︷︷ ︸
Not interesting

+α + βxi

Hypothesis of no differential expression between the groups

H0 : β = 0

glm(reads ~ group + offset(N), data=DF, family="poisson")

Can extend the model to Generalized linear mixed effect
(Poisson mixed effect model) to account for additional
sources of variation.
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Modeling read counts

Overdispersion can be a problem.
Recall the assumption from the Poisson distribution:
E(Ri ) = Var(Ri ) = Nipi

Alternatives:

• Use a Poisson regresion with overdispersion, i.e., where
Var(Ri ) = σE(Ri ).

• Use another distribution — for example a negative
binomial distribution — to describe the read counts.

glm(reads ~ group + offset(N), data=DF,

family="quasipoisson")
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Zero-inflation models

The dispersion problem in Poisson/NB models is often
caused by zero-inflation.
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Zero-inflation models

Useful in situations like:

• RNA sequence reads

• Microbiome data (abundance counts or percentages)

• (Some) mixture modeling
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Example: microbiome data
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Example: microbiome data, abundance

Individuals analysis of operational taxonomic units (OTUs)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Sam1 0.00 0.00 16.72 28.52 0.00 4.74 22.69 0.00 11.81 15.53

Sam2 24.10 7.69 0.00 0.00 16.59 0.00 0.00 6.61 20.26 24.76

Sam3 12.99 0.00 36.00 0.00 18.22 12.24 0.00 8.84 0.00 11.71

Sam4 10.33 7.15 8.28 23.03 4.12 3.66 0.00 21.77 6.36 15.31

Sam5 4.47 5.66 13.77 15.24 0.00 31.41 23.38 0.00 6.07 0.00

Two types of zeroes!
Compositional data.
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Zero-inflation models

Often two-part models:

Yi ∼
{

δ0 if πi

Fi if (1−πi )
,

where δ0 is a point-mass in zero, and πi is a mixture
probability.

Mixture model with two components:

• A model for the mixture component.

• A conditional model for the data given that it is not
zero.
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Different interpretations

• Zero-inflated models: A standard distribution, Fi , and
an excess of zeroes, δ0.

• Hurdle models: A standard distribution which does not
contain zeroes, Fi , and a number of zeroes, δ0.

Different interpretation and view of contamination.
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Possibilities in R

• Zero-inflated models: A standard distribution, Fi , and
an excess of zeroes, δ0.

• Hurdle models: A standard distribution which does not
contain zeroes, Fi , and a number of zeroes, δ0.

Different interpretation and view of contamination.
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The compositional problem

Truly overdispersed Dirichlet-multinomial data:

• Multiple testing problem.

• OTU’s are not independent (when looking at relative
abundance).

• Constraints. Negative correlation.
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Analysis of composition of microbiomes
(ANCOM)

Aitchison’s solution to the compositional data problem.
Transform data from ∆N−1 to RN−1 using the log-ratio
transformation, e.g., for (X +Y +Z = 1) we use

V = log(X/Z ),W = log(Y /Z )

Inverse log-ratio transform

X =
exp(V )

exp(V )+exp(W )+1
,Y =

exp(W )

exp(V )+exp(W )+1
,Z =

1

exp(V )+exp(W )+1
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The transform
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The isometric-log-ratio (ilr) transformation

1 Represent a composition as a real vector

2 Coordinates in an orthogonal system

3 Use function ilr() from the compositions package.

4 Interpretation of the results may be difficult, since there
is no one-to-one relation between the original parts

5 Can be analyzed using multivariate analysis tools
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Integrative data analysis

Integrative data analysis: analysis of data from multiple
sources (aka Multi-Omics analysis).

Typically several high-dimensional datasets. Analysing each
of them by itself could be problematic.

How can we combine them?

• Data pooling

• Multi-step methods

• Simultaneous analysis

No golden standard!
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Data pooling

Large dataset from different sources — on the same type of
experiment.

Not really a “problem”.

• If we only have summary statistics then to meta-analysis

• If we have raw data then merge the datasets and do the
analysis we would do on each of them.

Statistical model

Yi = Xβ + sourceiγ + εi

• Increased statistical power

• Increased sample heterogeneity
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Integrative data analysis
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High-dimensional

So far we have considered two situations:

1 Large number of outcomes, few predictors.
• Gene expression

2 One outcome, large number of predictors.
• GWAS, gene expression
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Simultaneous analysis of multiple outcomes

How can we handle multiple outcomes?

Univariate statistical model

Yi = Xiβ + εi , εi ∼ N(0,σ2)

But we have M of those (one for each outcome)
Multivariate version:

Ymi = Xmiβm + εmi , εi ∼ N(0,σ2
m)

“Stack them” and analyze them using the methods we have
already seen. Note we have variance hetergeneity!
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“Real” multivariate outcomes

gene1 1.1 0.3 0.2 -.4 1.4 1.0 ...

gene2 0.3 2.3 1.2 -.9 -.4 -.1 ...

gene3 2.0 0.0 0.0 0.2 -.2 -.2 ...

.

.

geneN 1.1 0.4 0.1 -.3 0.4 0.0 ...

Now imagine we have measurements over time.

Each individual provides a longitudinal profile of
measurements.
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LCMS metabolite data
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Analysis of longitudinal data

Univariate statistical model

Yi = Xiβ + εi , εi ∼ N(0,σ2)

A generalized linear mixed effect model (GLMM / mixed
model / random effect model) be used to extend the GLM to
accommodate longitudinal measurements.

However, not really suited for super-large dataset.

Critical with multiple testing
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Data types

• Measured by LC-MS

• 3-D data structure

• Regions of interest

• Y ∈ Rr×k×n
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Dimension reduction

• Approximate Y ∈ Rr×k×n such that

Y ≈
c

∑
i=1

Ai ⊗Bi ⊗Ci

where A ∈Rk×c , B ∈Rr×c and C ∈Rn×c and where c is
the number of components.

• Important that c is fairly accurate. Chosen empirically.

• A and B can be interpreted as basis functions for
retention time and m/z values

• C is the mixing matrix, representing the scaling of A and
B needed to reconstruct the original data.
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Parallel factor analysis
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Multidimensional dimension reduction

In a sense it is like PCA:

We wish to find a few simple components that can
approximate the matrix well.

Optimal solution: We wish to find a few simple components
that can approximate the matrix well and that we can
interpret!.
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PARAFAC (parallel factor analysis)

Y

A

B
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Integrative data analysis
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Integrative data analysis

phenotype metabolite geneexpression SNP

Y = Xβ

Z = Y γ

W = Zθ

Could be analyzed with a multiple regression model:

W = Zθ = (Y γ)θ = Xβγθ

What about the errors?
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Background

Cassava dataset 30 samples
• gene expression of 13865 genes
• metabolite profiling with LC-MS

Goal

Identify new associations between gene expression and
metabolites
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Data types

• Measured by LC-MS

• 3-D data structure

• Regions of interest

• Y ∈ Rr×k×n

• Measured by DNA
microarray

• 2-D data structure

• Few genes of interest

• X ∈ Rm×n
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Example

• Genes control production of metabolites

• Measure gene expression

• Measure metabolite production

• Construct a model that includes both data types

• Results directly related to the underlying biology
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Method

We wish to formulate a model

E(Y) is a function of Xβ,

where Y ∈ Rr×k×n is a 3-D tensor of spectra. X ∈ Rm×n is a
matrix of gene expression and β is a coefficient matrix

Samples from n experiments, m genes, m� n, r ×k � n

Problems:

• Dimension reduction

• Variable/feature selection

• Biological interpretation

• Some kind of inference
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Modelling

Since the mixing matrix C is the scaling of the basis
functions, gene expressions highly associated with C are likely
to have an effect of the peaks in Y.

Make c models

Ci =Xβi + εi for i = 1, . . . ,c

with βi subject to some restrictions

Restrictions can be LASSO, OSCAR, elastic net,
. . . according to the purpose of the analysis

Results from each model gives information about each of the
c components.
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Simulations

• 10 ’biological’ replicates

• 2 treatments

• 1000 genes

• 5-15 metabolites, controlled by as many genes

• 300 runs for each combination
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Simulations

2 4 6 8 10
sample
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Simulation results
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Simulation results
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Application — Cassava

• Cassava dataset 30 samples, 13865 genes

• Three compound↔gene relationships found.
• Linamarin, a well-known compound in Cassava
• Gene coupled to several CYP79 enzymes [catalyst in the

synthesis of Linamarin in Cassava]
• Final peak quite likely Lotaustralin and ... no clue

• But ... Cassava is different
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