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Overview
• Discover regions in the genome associated with

disease/trait
• Look for variations in that occur more frequently in

people with a particular disease than in people without
the disease
• Consider thousands/millions of SNPs at the same time

gene1

phenotype gene2

...

genem
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GWAS overview — steps
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What is a SNP?
A single nucleotide polymorphism is a DNA sequence
variation that occurs when a single nucleotide in the genome
is altered (in a significant proportion of the population, say >
1%).

• Human genome sequence is 99.9% identical in all people.
• Almost all common SNPs have only two alleles.
• Quite abundant — roughly 1/1000 bases
• A SNP close to a gene acts as marker for that gene.
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SNP data

One of the two alleles will be the least frequent in the
population. Its frequency is called minor allele frequency
(MAF).

Each individual has 0, 1 or 2 copies of the rare allele.

id bmi g1 g2 g3 g4 g5 g6 g7

1 23 0 2 0 1 0 0 1

2 31 0 1 0 0 2 0 1

3 26 0 1 1 0 0 0 0

4 35 2 1 1 0 2 1 0

Each gene corresponds to the genotype at the particular SNP.
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SNP data

Statistical model

bmii = Xβ + εi = α +
m

∑
j=1

βxim + εi

• Problem with large number of predictors — we need the
methods from this Monday.

• How do we handle more complex systems? Multiple
genes at the same time?

• Missing data

• External information

Slide 6/46 — Statistical methods in bioinformatics



un i ver s i ty of copenhagen apr . 1 4th , 2 021

Single marker analysis — standard approach

• Identify SNPs where one allele is significantly associated
to the outcome (quantitative or binary).

• Identify chromosomal regions where one haplotype is
significantly associated to the outcome (quantitative or
binary).

• Run an analysis for each SNP! Will need the methods
we introduced on Monday.
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Manhattan plot
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Standard approach — ”millions” of t tests

> library("data.table") # Get package

> geno <- fread("hapmap1.ped") # Read file

> for(j in seq_along(geno)){ # Convert 0 to NA

+ set(geno, i=which(geno[[j]]==0), j=j, value=NA)

+ }

> pheno <- fread("qt.phe") # Read phenotypes

> geno$V1 <- NULL ; geno$V2 <- NULL ; geno$V3 <- NULL ;

> geno$V4 <- NULL ; geno$V5 <- NULL ; geno$V6 <- NULL

> # Collapse pairs of alleles to genotype

> geno2 <- geno[, lapply(1:(ncol(.SD)/2),

+ function(x) sum(.SD[[2*x-1]], .SD[[2*x]])-2),

+ by = 1:nrow(geno),

+ .SDcols = grep('^V', names(geno), value = TRUE)]

> keep <- which(apply(geno2, 2, sd) > 0) # Remove those with no var

> geno2 <- geno2[,keep, with=FALSE]

> geno2$nrow <- NULL
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Standard approach — ”millions” of t tests

> library("MESS")

> mres <- mfastLmCpp(pheno$V3, as.matrix(geno2))

> pval <- 2*pt(-abs(mres[,3]), df=nrow(pheno)-2)

> head(sort(pval))

[1] 5.272596e-09 1.095443e-06 1.630357e-05 2.885730e-05 3.580539e-05

[6] 3.715969e-05

> head(names(geno2)[order(pval)])

[1] "V10602" "V81525" "V37137" "V12225" "V18546" "V53636"
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Controlling for genomic controls
There can be a ”shift” in p-values due to unfulfilled
assumptions — they become too small.
• Most markers should be unassociated
• Survey markers with a low prior probability of

association with disease (”null markers”)
• The inflation factor, λ, is the ratio of the observed
median value of the χ2-statistic for the null markers
divided by the expected median value of the χ2-statistic
(approximately 0.456 for 1 df tests).
• If λ > 1 then downscale all subsequent statistics by λ.

> statistics <- mres[,3]^2 ; median(statistics)

[1] 0.5471164

> rescaled <- statistics/(median(statistics)/0.456)

> results <- 1-pchisq(rescaled, df=1)

> head(sort(results)) # p-values

[1] 3.274656e-09 1.697990e-06 3.075233e-05 5.555227e-05 6.933216e-05

[6] 7.201973e-05

> head(names(geno2)[order(results)])

[1] "V10602" "V81525" "V37137" "V12225" "V18546" "V53636"
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Standard approach — alternative?

> library(glmnet)

> res <- glmnet(as.matrix(geno2), pheno$V3)

> plot(res)

Problems with this approach?
Could we fix them?
Effects or p-values?
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Digression — missing data
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Another digression: association/causation

• Suppose that genotypes at a particular SNP are
significantly associated with the outcome

• This may be because the SNP is associated with some
other factor (a confounder), which is associated with
outcome but is not in the same causal pathway.

confounder

SNP of interest phenotype
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Possible confounders

Possible confounders of genetic associations:

• Ethnic ancestry

• Genotyping batch, genotyping centre

• DNA quality

Need to control for possible confounders!
How can we do that? What if we haven’t measured it?

Slide 15/46 — Statistical methods in bioinformatics



un i ver s i ty of copenhagen apr . 1 4th , 2 021

Helpful confounding

Linkage disequilibrium (LD) is the non-independence of
alleles at nearby markers in a population because of a lack of
recombinations between the markers
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Direct and indirect association testing

Functional SNP is genotyped
and an association is found

Functional SNP (blue) is not
genotyped, but a number of
other SNPs (red), in LD with
the functional SNP, are
genotyped, and an association
is found for these SNPs
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Digression — Fisher’s approach

Statistical model

bmii = Xβ + εi = α +
m

∑
j=1

βxim + εi

Fisher assumed that there was a large number of genes each
with small effect. Thus, the combined effect of the genes can
be well approximated by a Gaussian distribution (law of large
number idea).

In general we expect additivity of effects but that may not be
correct.
What assumptions have we made so far?
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The common disease — common variant
hypothesis
The “Common Disease, Common Variant (CDCV)”
hypothesis argues that genetic variations with appreciable
frequency in the population at large, but relatively low
“penetrance” are the major contributors to genetic
susceptibility to common diseases.
• GWASs have identified thousands of common variants.

• The infinitesimal model is standard genetic theory.

• Common variants collectively capture most of the genetic variance
in GWASs

But:

• The missing heritability has not been accounted for.

• The quantitative trait locus (QTL) paradox: QTLs that are
consistently detected in pedigrees and in experimental crosses are
not observed in outbred populations.

• Very few common variants have been functionally validated
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The common disease — rare variant hypothesis

The “Common Disease, Rare Variant (CDRV)” hypothesis, on
the contrary, argues that multiple rare DNA sequence
variations, each with relatively high penetrance, are the major
contributors to genetic susceptibility to common diseases.
• Evolutionary theory predicts that disease alleles should be rare

• Many rare familial disorders are due to rare alleles of large effect

• Empirical population genetic data show that deleterious variants
are rare

But:

• Simulation of the allele frequency distribution of data from
genome-wide association studies (GWASs) is not consistent with
rare variant explanations.

• Genome-wide associations are consistent across populations
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What can we hope to find?

Slide 21/46 — Statistical methods in bioinformatics



un i ver s i ty of copenhagen apr . 1 4th , 2 021

Which markers can we hope to find?

Recall the t test statistic for a single explanatory variable
(the kth):

T =
β̂k −0

SE(β̂k)
=

β̂k −0

s/SSx
=

(β̂k) ·SSx
s

,

where SSx is (n−1) ·Var(Xk).

Note that variance of a single marker, X , with MAF p is
(assuming Hardy-Weinberg equilibrium):

Number of alleles 0 1 2
Frequency (1−p)2 2 ·p · (1−p) p2

The variation of X is 2 ·p · (1−p).
Smaller p⇒ smaller variance ⇒ harder to detect an effect.

GWAS geared towards detection of “common” genes.
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Heritability
Observed phenotype Y is given as

Y = A + D︸ ︷︷ ︸
Genes

+ C + E︸ ︷︷ ︸
Environment

(1)

such that

Cov(Y ) = σ
2
a2Φ + σ

2
d∆7 + σ

2
cJ + σ

2
e I .

Partition the variance into 4 sources:

Var(Y ) = σ
2
a + σ

2
d + σ

2
c + σ

2
e . (2)

Divide the ACDE model (2) by the total phenotypic variance,
Var(Y ):

1 = h2 +d2︸ ︷︷ ︸
H2

+c2 + e2 (3)
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Heritability estimation requirements

Classical approach: need families

Twins: compare correlation between MZ twins to correlations
between same-sex DZ twins.

Families: look at contribution based on familial/genetic
relationship to the total variance.
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Example — heritability

n h2±SE

% body fat 296 0.47 ± 0.13
Waist-to-hip ratio 301 0.38 ± 0.13
BMI 305 0.46 ± 0.14
Serum leptin 269 0.25 ± 0.12

Birth length 249 0.44 ± 0.12
Birth weight 249 0.89 ± 0.09
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The case of the missing hertability...
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ACE h2

AE CE

h2 0
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Schousboe K, et al (2003). Sex differences in heritability of BMI: A

comparative study of results from twin cohorts in eight countries. Twin

Research 6.
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h2 = 0.15,c2 = 0.25
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Approximating “heritability” from unrelated
individiuals

So what can we do if we want to estimate heritability from
unrelated individuals?

Need an estimate of the genetic correlation among
individuals in order to estimate the heritability. However,
they are assumed unrelated.

Alternative: estimate the proportion of the variance explained
by common SNPs in total (through LD with causal variants)
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“Heritability” from unrelated individiuals
Statistical model:

Y = Xβ + Wu+ ε

where W is the n×m matrix of standardized genotypes:

wij =
(xij −2pj)√

2 ·pj · (1−pj)

Note that the variance of Y is

Var(Y ) = WWt
σ
2
u + σ

2
e I

Note that the size of the diagonals of WWt increases with
the number of markers, m. So we standardize it:

Var(Y ) =
WWt

m
σ
2
g + σ

2
e I

Estimate of proportion of variance explained:
σ2
g

σ2
g+σ2

e
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Combined marker analysis

Until now: a series of single marker analyses. Possibly
penalized regression

Use external / additional information

• Multiple markers in the same region provide more
information/better LD with the causal gene

• Multiple markers in the same biological pathway/set
provide more information

• Gene-set enrichment analysis
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Haplotypes

We observe unphased SNP genotypes

0 1 1 2

We would like to estimate the original haplotypes

0 1 1 1 0 1 0 1

0 0 0 1 0 0 1 1

How do we do that?
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Haplotypes

Typical haplotypes can be estimated from, e.g., families.
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Association of rare variants

Recall that GWAS is useful for common variants.
However, rare variant might be just as important.

Example: variant with frequency of 0.001, disease with
prevalence 10%. A case-control study with a two-fold
increase effect in risk requires. 33k cases and controls!
A 3-fold increase requires 11k cases and controls!

• The burden test.

• The Sequence Kernel Association Test (SKAT)
approach.
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Association of rare variants

The burden test:

• Instead of testing rare variants individually, group
variants likely to have similar function

• Score presence or absence of rare variants per individual.
Use rare variant score to predict trait values

• If all variants are causal, leads to large increase in power
• In practice, success depends on:

• Number of associated variants,
• Number of neutral variants diluting signals

Slide 39/46 — Statistical methods in bioinformatics



un i ver s i ty of copenhagen apr . 1 4th , 2 021

The burden test
• Instead of testing rare variants individually, group

variants likely to have similar function

• Score presence or absence of rare variants per individual.
Use rare variant score to predict trait values

• If all variants are causal, leads to large increase in power
• In practice, success depends on:

• Number of associated variants,
• Number of neutral variants diluting signals

What do we do in practice to test the burden of rare variants:

• Count # rare variants within each gene

• Associate # variants with phenotype

Burden tests implicitly assume that all the rare variants in a
region are causal and affect the phenotype in the same
direction with similar magnitudes,
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Using polygenic risk scores

What if we are not interested in genetics per se but just want
to control for it?
Assumes a set S which are the SNPs of interest and their
corresponding regression coefficients, β̂s.

• Create a polygenic risk score

PRSi = ∑
s∈S

β̂sxis

• Use the PRS as a predictor in a regression model

What are the problems with this approach? What are the
advantages?
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The sequence kernel association test
SKAT aggregates individual variant score test statistics with
weights.

1 Consider a region, e.g., a gene, that has m variants.

2 The statistical model is

Y = Xβ + ε

Assume that the regression coefficients are random
variables each with variance τw2

j .

3 A test for no effect, H0 : β = 0 corresponds to testing
the variance scaling parameter H0 : τ = 0.

4 In practice the test statistic for H0 becomes a weighted
sum of the individual SNP score statistics.

The SKAT test allows for differing effect sizes and directions
of the variants in the region.
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Gene-set enrichment analysis

Idea: GSEA tests for enrichment of some pre-specified group
S among N background genes.
How: the ensemble of genes in each gene set using a metric
for each gene. Increases statistical power for “difference”
between two outcomes.
If the set contains important genes then the genes in the set
should cluster around the top of the list of important genes.

Any set of genes that makes sense to consider together.
The gene sets are defined based on prior biological
knowledge, e.g., published information about biochemical
pathways or coexpression in previous experiments.
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Gene-set enrichment analysis

Start with ranked list (L) of genes that are in (+) or not in
(-) a gene set (S) based on e.g., fold change, correlation,
differences.
Evaluate the fraction of genes in S (+) weighted by their
correlation and the fraction of genes not in S (-) present up
to a given position i in L
Three key elements:

1 Calculate an enrichment score (ES) that reflects the
degree to which a set S is overrepresented at the
extremes

2 Estimate the statistical significance (the p-value) of the
ES by using an empirical phenotype-based permutation
test procedure.

3 Adjustment for Multiple Hypothesis Testing.
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Gene-set enrichment analysis

Enrichment score = value of maximum deviation from 0 of
the running sum.
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Gene-set enrichment analysis — testing

Uses gene set permutation.

• For gene set S , each permutation π is the random
selection of s genes from all genes in the genome which
have a probe on the platform.

• If ES(S) > 0, the resulting empirical p value for S is the
fraction of the ESπ(S) values that equal or exceed the
actual enrichment score ES(S).
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