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Data sizes. The  problemN ≪ P
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The "Big Data" revolution

�. "Big  small " problem with many modern large-scale-datasets:

registers, images, text, *-omics, ...

�. Need to reduce the dimension in some way

�. How do we evaluate signi�cance when we have used the data for

feature selection?

�. Multiple testing becomes an issue --- not just for high-dimensional

data

P N
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Example: Easy to �nd something "interesting"

sim <- function(n, p) { x  <- matrix(rnorm(n*(p+1)), ncol=(p+1)) ; 

                        DF <- data.frame(x) ; 

                        names(DF)[p+1] <- "Y"; DF  }

sim(100, 5) %>% lm(Y ~ ., data=.) %>% broom::tidy()

# A tibble: 6 × 5

  term        estimate std.error statistic p.value

  <chr>          <dbl>     <dbl>     <dbl>   <dbl>

1 (Intercept)  -0.149     0.104     -1.44  0.154  

2 X1            0.0373    0.0954     0.391 0.697  

3 X2            0.0243    0.0980     0.248 0.805  

4 X3            0.0668    0.124      0.538 0.592  

5 X4            0.270     0.0931     2.90  0.00468

6 X5            0.0360    0.103      0.349 0.728
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Manhattan plot
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Multiple comparison problems

Errors committed when testing a single null hypotheses, 

Analysis result H0 true H0 false

Reject α 1-β

Don't reject 1-α β

 is the signi�cance level

 is the power

H0

α

1 − β
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Multiple comparison problems

�e family-wise error rate (FWER) is the probability of making at least

one type I error (false positive).

For  tests we have

where the third equality only holds under independence, but the

inequality holds due to Boole’s inequality.

m

FWER = P(∪(pi ≤ α))) = 1 − P(no false positives) = 1 − (1 − α)m ≤ mα
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Multiple testing
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Multiple comparison problems

Number of errors committed when testing  null hypotheses.

Analysis result H_0 true H_0 false Total

Reject V S R

Don't reject U T m-R

Total m

Here , the number of rejected hypotheses/discoveries. , ,  and 

are unobserved. �e FWER is

m

m0 m − m0

R V S U T

FWER = P(V > 0) = 1 − P(V = 0)
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Bonferroni correction

�e most conservative method but is free of dependence and

distributional assumptions.

So set the signi�cance level for each individual test at .

In other words we reject the th hypothesis if

FWER = 1 − P(V = 0) = 1 − (1 − α)m ≤ mα

α/m

i

mpi ≤ α ⇔ pi ≤
α

m
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Sidak correction

Slightly less conservative than Bonferroni (but not much). Requires

independence!

1 − (1 − α)m = α∗ ⇔ α = m√1 − α∗
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Holm correction

�. Compute and order the individual p-values: .

�. Find 

�. If  exists then reject hypotheses corresponding to

p(1) ≤ p(2) ≤ ⋯ ≤ p(m)

k̂ = min{k : p(k) > }α
m+1−k

k̂

p(1) ≤ p(2) ≤ ⋯ ≤ p(k̂−1)

12



Holm correction

Controls the FWER: Assume the (ordered)  is the �rst wrongly rejected

true hypothesis. �en .

Hypothesis  was rejected so

Since there are  true hypotheses then (Bonferroni argument) the

probability that one of them is signi�cant is at most  so FWER is

controlled.

k

k ≤ m − (m0 − 1)

k

p(k) ≤ ≤ ≤
α

m + 1 − k

α

m + 1 − (m − (m0 − 1))
α

m0

m0

α
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Practical problems

While guarantee of FWER-control is appealing, the resulting

thresholds o�ten su�fer from low power.

In practice, this tends to "wipe out" evidence of the most interesting

e�fects

FDR control o�fers a way to increase power while maintaining some

principled bound on error
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False discovery rate

Number of errors committed when testing  null hypotheses.

Analysis result H_0 true H_0 false Total

Reject V S R

Don't reject U T m-R

Total m

Proportion of false discoveries is . [Set to  for ]

�e false discovery rate is 

m

m0 m − m0

Q = V
R

0 R = 0

FDR = E(Q) = E( )V
R
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Estimating FDREstimating FDR
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Estimating FDREstimating FDR
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Estimating FDREstimating FDR
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Estimating FDR — BH step-up

Benjamini-Hochberg step-up procedure to control the FDR at .

�. Compute and order the individual p-values: .

�. Find 

�. If  exists then reject hypotheses corresponding to

α

p(1) ≤ p(2) ≤ ⋯ ≤ p(m)

k̂ = max{k : ⋅ p(k) ≤ α}m
k

k̂

p(1) ≤ p(2) ≤ ⋯ ≤ p(k̂)
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Estimating FDR — BH step-up

-values

Note that each  is smaller or equal to the criterium in Holm's method

so controls the FWER.

p

~p(1) = min{~p(2), mp(1)}

⋮ ⋮
~p(m−1) = min{~p(m), p(m−1)}
~p(m) = p(m)

m
m−1

pi
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Estimating FDR — BH step-up

If iid of the  tests (and all tests independent) and ordered so the 

true tests comes �rst. Control FDR at level :

m0 m0

q

E(V /R) =
m

∑
r=1

E[ 1R=r] =
m

∑
r=1

E[V 1R=r]

=
m

∑
r=1

E[
m0

∑
i=1

1pi≤ 1R=r] =
m

∑
r=1

[1p1≤ 1R=r] = ⋯

=
m

∑
r=1

[
m0

∑
i=1

1p1≤ 1R=r]

= q ≤ q

V

r

1
r

1
r

qr

m

m0

r
qr

m

m0

r
qr

m

m0
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 values

�e -value is de�ned to be the FDR analogue of the -value.

�e -value of an individual hypothesis test is the minimum FDR at

which the test may be called signi�cant.

q

q p

q value(pi) = min
t≥pi

F̂DR(t)

q

22



 values

When all  null hypotheses are true then FDR control is equivalent to

FWER control.

FDR approach generally gives more power than FWER control and

fewer Type I errors than uncorrected testing.

�e FDR bound holds for certain classes of dependent tests. In

practice, it is quite hard to "break"

q

m
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Evaluating complex methods and data

When we have complex data or complex procedures/algorithms (or

perhaps just big data combined with simple methods) then we still with

to evaluate their results.

How stable are the results?
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Randomzation/simulation tests

Sanity check: how does the method perform under realistic situations

where there are nothing to be found?

sim(100, 5) %>% lm(Y ~ ., data=.) %>% broom::tidy()

# A tibble: 6 × 5

  term        estimate std.error statistic p.value

  <chr>          <dbl>     <dbl>     <dbl>   <dbl>

1 (Intercept)  -0.0646    0.0953    -0.678  0.499 

2 X1           -0.149     0.101     -1.48   0.142 

3 X2            0.0749    0.0928     0.808  0.421 

4 X3           -0.151     0.0849    -1.78   0.0784

5 X4            0.0464    0.0927     0.501  0.618 

6 X5           -0.202     0.0949    -2.13   0.0358 25



Approximate the distribution

If we have information about the distribution under the null:

Simulate data, run algorithm to get an idea about how it behaves

If we don't have information about the distribution under the null

Permutations, randomizations

Use bootstrap, subsampling

26



ExercisesExercises
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