STATISTICAL METHODS IN BIOINFORMATICS:

Analysis of RNA sequencing data

Stefan E Seemann
ses@sund.ku.dk

Center for non-coding RNA in Technology and Heath (http://rth.dk) Dep. of Veterinary and Animal Sciences, SUND, University of Copenhagen DK

31 March 2023

Why sequencing?

Why sequencing?

- Assemble the genome and transcriptome of a species
- Find genomic variation in a population
- Find genomic and transcriptomic associations with diseases and phenotypes
- Find organisms in environmental sample \rightarrow metagenomics
- Identify potential drug targets \rightarrow personalized medicine
- Tracking of virus variants and mutations \rightarrow vaccine development
\Rightarrow Understand Molecular Biology

The beginning

- 1968 - The first 12 bases
- 1973 - 24 bases of the lactose-repressor binding site \rightarrow two years of work: one base per month
- 1977 - Sanger sequencing and Gilbert sequencing \rightarrow The Nobel Prize in Chemistry 1980 for Frederick Sanger and Walter Gilbert

Next generation sequencing (NGS)

(synonym: high-throughput sequencing)
Massively parallelize the sequencing process
2000: Lynx Therapeutics Company launched first NGS technologies \rightarrow later bought by Illumina

Cost of sequencing a single human genome from 2001 to 2020:

Today's programme

		Alignment, mapping and assembly $0815-0900$
Lecture	Alignment methods	
$0900-1000$	Exercise	Dynamical programming of pairwise alignment on paper
$1000-1030$	Lecture	Read mapping
$1030-1100$	Lecture	Transcriptome assembly
$11-12$	Lunch	
		Estimation of gene expression and differential expression
$1200-1300$	Lecture	Expression analysis
$1300-1430$	Exercise	Expression analysis in R $1430-1500$

Alignment methods

Where do we need sequence alignments?

Where do we need sequence alignments?

- Sequence similarity
- Gene finding by similarity
- Protein structure by similarity
- RNA structure by similarity
- Motif finder
- Genome and transcriptome assembly
- Gene expression estimation

Evolutionary events

- DNA sequences change in time.
- Find evolutionary related sequences.
- Evolutionary events:

```
CAGTCATG \xrightarrow{ INsertion CACTGTCATG }{\mathrm{ DEletioN }}\mathrm{ CACTGTCTG}
\xrightarrow { \text { SuBSTITUTION CACTATCTG} }
```



```
CATTGACGTG
```


Evolutionary tree

- Finding common ancestors.
- Parsimony principle: Evolution uses minimum number of operations.

- Probabilistic approaches (max. likelihood or sampling).

Alignments: optimize a score

ACTGTCATG

Score of a given alignment:
A--GTC-CG

$$
S_{\mathrm{tot}}=S\left[\begin{array}{l}
\mathrm{A} \\
\mathrm{~A}
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{C} \\
-
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{T} \\
-
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{G}
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{T} \\
\mathrm{~T}
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{C} \\
\mathrm{C}
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{A} \\
-
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{T} \\
\mathrm{C}
\end{array}\right]+S\left[\begin{array}{l}
\mathrm{G} \\
\mathrm{G}
\end{array}\right]
$$

- Score: substituting a residue in one seq. with a residue in another.
- Find the alignment that have the highest score.
- Try out all alignment combinations? (we deal with this soon)
- So speed of sequence comparisons matters!

Score matrices for DNA

- Standard DNA matrices look like

	A	C	G	T
A	5	-4	-4	-4
C	-4	5	-4	-4
G	-4	-4	5	-4
T	-4	-4	-4	5

- Exercise construct our own matrix:

Identity: 8
Transition: 2 (eg. $\{\mathrm{A}, \mathrm{G}\} \rightarrow:\{\mathrm{A}, \mathrm{G}\}$; purine to purine) Transversion: -3 (eg. $A \rightarrow\{C, T\}$; purine to pyrimidine).

	A	C	G	T
A				
C				
G				
T				

Score matrices for DNA

- Standard DNA matrices look like

	A	C	G	T
A	5	-4	-4	-4
C	-4	5	-4	-4
G	-4	-4	5	-4
T	-4	-4	-4	5

- Exercise construct our own matrix:

Identity: 8
Transition: 2 (eg. $\{\mathrm{A}, \mathrm{G}\} \rightarrow:\{\mathrm{A}, \mathrm{G}\}$; purine to purine) Transversion: -3 (eg. $A \rightarrow\{C, T\}$; purine to pyrimidine).

	A	C	G	T
A	8	-3	2	-3
C	-3	8	-3	2
G	2	-3	8	-3
T	-3	2	-3	8

What about gaps?

- Gap cost. Cost of indel (Eg. $d=10$).
- Initiation and elongation.

Dynamical programming

- Find the alignment between CACTGTCATG and CAGTCTG that has the maximal score?
- What would be a trivial way?

Dynamical programming

- Find the alignment between CACTGTCATG and CAGTCTG that has the maximal score?
- What would be a trivial way?
- Basic idea: Use sub sequences! \rightarrow Dynamic Programming

Pairwise global alignments (Needleman-Wunsch)

Comparing sequences a and b. Given a substitution score $s(x, y)$ of replacing letter x with letter y, the highest scoring alignment can be found by the following recursion:

$$
S(i, j)=\max \left\{\begin{array}{l}
S(i-1, j-1)+s\left(a_{i}, b_{j}\right) \\
S(i-1, j)-d \\
S(i, j-1)-d
\end{array}\right.
$$

a_{i} residue at position i in seq. a b_{j} residue at position j in seq. b

$$
i=1, \ldots, N ; j=1, \ldots, M
$$

Initialization: $S(0,0)=0$. Hence: $S(i, 0)=-i d, S(0, j)=-j d$. Note: the alignment takes time $O(N M)$.

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0										
C											
A											
G											
T											
C											
T											
G											

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10										
A	-20										
G	-30										
T	-40										
C	-50										
T	-60										
G	-70										

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2									
G	-30	-12									
T	-40	-22									
C	-50	-32									
T	-60	-42									
G	-70	-52									

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8							
C	-50	-32	-14	4							
T	-60	-42	-24	-6							
G	-70	-52	-34	-16							

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Pairwise local alignments (Smith-Waterman)

Comparing sequences a and b. Given a substitution score $s(x, y)$ of replacing letter x with letter y, the highest scoring alignment can be found by the following recursion:

$$
S(i, j)=\max \left\{\begin{array}{l}
S(i-1, j-1)+s\left(a_{i}, b_{j}\right) \\
S(i-1, j)-d \\
S(i, j-1)-d \\
0
\end{array}\right.
$$

Note only positive numbers!
$i=1, \ldots, N ; j=1, \ldots, M$

Initialization: $S(0,0)=0$. Hence: $S(i, 0)=$?, $S(0, j)=$?.

Pairwise local alignments (Smith-Waterman)

Comparing sequences a and b. Given a substitution score $s(x, y)$ of replacing letter x with letter y, the highest scoring alignment can be found by the following recursion:

$$
S(i, j)=\max \left\{\begin{array}{l}
S(i-1, j-1)+s\left(a_{i}, b_{j}\right) \\
S(i-1, j)-d \\
S(i, j-1)-d \\
0
\end{array}\right.
$$

Note only positive numbers!
$i=1, \ldots, N ; j=1, \ldots, M$

Initialization: $S(0,0)=0$. Hence: $S(i, 0)=0, S(0, j)=0$.

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0														
A	0														
C	0														
A	0														
G	0														
G	0														
G	0														
G	0														
A	0														
A	0														
A	0														
C	0														
T	0														
G	0														

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	8	8	8	0	0	2	0	0	0	8	8	0	8	2
A	0	8	16	16	6	0	2	0	0	0	8	16	6	8	10
C	0	0	6	13	24	14	4	4	2	2	0	6	24	14	5
A	0	8	8	14	14	21	16	6	1	0	10	8	14	32	22
G	0	2	10	10	11	11	29	19	9	0	2	12	5	22	40
G	0	2	4	12	7	8	19	26	16	6	2	4	9	12	30
G	0	2	4	6	9	4	16	16	23	13	8	4	1	11	20
G	0	2	4	6	3	6	12	13	13	20	15	10	1	3	19
A	0	8	10	12	3	0	8	9	10	10	28	23	13	9	9
A	0	8	16	18	9	0	2	5	6	7	18	36	26	21	11
A	0	8	16	24	15	6	2	0	2	3	15	26	33	34	24
C	0	0	6	14	32	22	12	4	2	4	5	16	34	30	31
T	0	0	0	4	22	40	30	20	12	10	1	6	24	31	27
G	0	2	2	2	12	30	48	38	28	18	12	3	14	26	39

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	8	8	8	0	0	2	0	0	0	8	8	0	8	2
A	0	8	16	16	6	0	2	0	0	0	8	16	6	8	10
C	0	0	6	13	24	14	4	4	2	2	0	6	24	14	5
A	0	8	8	14	14	21	16	6	1	0	10	8	14	32	22
G	0	2	10	10	11	11	29	19	9	0	2	12	5	22	40
G	0	2	4	12	7	8	19	26	16	6	2	4	9	12	30
G	0	2	4	6	9	4	16	16	23	13	8	4	1	11	20
G	0	2	4	6	3	6	12	13	13	20	15	10	1	3	19
A	0	8	10	12	3	0	8	9	10	10	28	23	13	9	9
A	0	8	16	18	9	0	2	5	6	7	18	36	26	21	11
A	0	8	16	24	15	6	2	0	2	3	15	26	33	34	24
C	0	0	6	14	32	22	12	4	2	4	5	16	34	30	31
T	0	0	0	4	22	40	30	20	12	10	1	6	24	31	27
G	0	2	2	2	12	30	48	38	28	18	12	3	14	26	39

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	8	8	8	0	0	2	0	0	0	$\mathbf{8}$	8	0	8	2
A	0	8	16	16	6	0	2	0	0	0	8	16	6	8	10
C	0	0	6	13	24	14	4	4	2	2	0	6	24	14	5
A	0	8	8	14	14	21	16	6	1	0	10	8	14	32	22
G	0	2	10	10	11	11	29	19	9	0	2	12	5	22	40
G	0	2	4	12	7	8	19	26	16	6	2	4	9	12	30
G	0	2	4	6	9	4	16	16	23	13	8	4	1	11	20
G	0	2	4	6	3	6	12	13	13	20	15	10	1	3	19
A	0	$\mathbf{8}$	10	12	3	0	8	9	10	10	28	23	13	9	9
A	0	8	16	18	9	0	2	5	6	7	18	36	26	21	11
A	0	8	16	24	15	6	2	0	2	3	15	26	33	34	24
C	0	0	6	14	32	22	12	4	2	4	5	16	34	30	31
T	0	0	0	4	22	40	30	20	12	10	1	6	24	31	27
G	0	2	2	2	12	30	48	38	28	18	12	3	14	26	39

Alignment Substitution Matrices

- Alignments based on the cost of substitions and indels (insertion/deletions).
- List the cost of replacing a residue in one sequence with a residue in another.
- Basic idea: comparing log-odds:

$$
s(a, b)=\log \frac{p_{a b}}{q_{a} q_{b}}=\log \frac{\text { observed frequency }}{\text { expected frequency }}
$$

- The 'log' makes the scores additive.

Question: What is the optimal way to choose observed frequencies?

Alignment Substitution Matrices

- Alignments based on the cost of substitions and indels (insertion/deletions).
- List the cost of replacing a residue in one sequence with a residue in another.
- Basic idea: comparing log-odds:

$$
s(a, b)=\log \frac{p_{a b}}{q_{a} q_{b}}=\log \frac{\text { observed frequency }}{\text { expected frequency }}
$$

- The 'log' makes the scores additive.

Question: What is the optimal way to choose observed frequencies?
\rightarrow large database of true alignments
Commonly used scoring matrices:

- BLOSUM: BLOck SUbstitution Matrix
- PAM: Point Accepted Mutation

Alignment score statistics

Question: Given a particular scoring system, how many distinct local alignments with score $\geq S$ can one expect to find by chance from the comparison of two random sequences of lengths m and n ?

Or in other words, when can a local alignment be considered statistically significant?

E-values and P-values

The expected number of local alignments with a score of at least S is given by the E-value for the score S :

$$
E=K m n e^{-\lambda S}
$$

(1) Doubling the length of the query sequence (m) or the size of the database (n) should double the number of local alignments.
(2) E-value decreases exponentially as score S increases.

The probability of observing at least one alignment with score $\geq S$

$$
p=1-e^{-E}
$$

\Rightarrow Sequence similarity score S is extreme value distributed

Time is important

- Dynamic programming: exact in $O(N M)$.
- When becomes time an issue?

Time is important

- Dynamic programming: exact in $O(N M)$.
- When becomes time an issue?
\rightarrow Target is entire genome
\rightarrow Alignment of two genomes
\rightarrow Target is all observed sequences (e.g. NCBI BLAST non-redundant database)
- Heuristics (e.g. use only diagonals in dynamic programming)

BLAST (Basic Local Alignment Search Tool)

Less accurate than Smith-Waterman, BUT 50 times faster.
Idea: true matches are likely to have short stretches of identity (high score).
(1) List of short words of fixed length that will match the query sequence (word length: 3 for protein; 11 for nucleic acids).
(2) Scan database for these words. Extend matches in both directions in an attempt to find an alignment with a score exceeding S.
Segment pairs whose scores cannot be improved by extending or trimming are called high scoring pairs (HSPs).

Summary

- Dynamic programming (DP) saves time in sequence comparisons
- Some assumptions in DP, mention some
- In many applications, heuristics are needed to further speed up the comparison

Exercise: Dynamical programming of pairwise alignment

Complete the dynamic programming matrix of a global alignment:
Align the sequences ACGIG and AACGGTG using a match score of 1 , a mismatch of -4 and a gap cost of -10 .

		A	C	G	T	G
A						
A						
C						
G						
G						
T						
G						

RNA-seq workflow

Read mapping

Full-length RNA library preparation

Raw data (Sequencing reads)

The FASTQ format:
@ERR459145.1 DHKW5DQ1:219:DOPT7ACXX:2:1101:1590:2149/1 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGC $+$
@7DBADDDBH?DHHI@DHHHHEGHIIIGGIFFGIBFAAGAFHA'5?B@D

- @: begin header
- 2:1101 flowcell lane 2, tile 1101
- x and y coordinates: 1590:2149
- $/ 1$ single-end reads; /1 and /2 paired-end (mate-paired) reads
- read sequence
- quality encoded ASCII characters

What is read mapping?

Determine position of a short read on the reference genome or transcriptome.

```
Reference: ...AA-CGCCTT... | = match
|:-:||||| : = mismatch
Read: AGGGGCCTT - = gap
```


Naive mapping

Search for query at each position in reference genome ACGTTACCGAATCGATCAAAGTCGA GTTA
$\mathrm{m}=$ query length, $\mathrm{n}=$ genome length

Naive mapping

Search for query at each position in reference genome ACGTTACCGAATCGATCAAAGTCGA GTTA
$\mathrm{m}=$ query length, $\mathrm{n}=$ genome length

Naive mapping

Search for query at each position in reference genome ACGTTACCGAATCGATCAAAGTCGA

GTTA :)
$\mathrm{m}=$ query length, $\mathrm{n}=$ genome length \rightarrow Time: $O(\mathrm{mn})$

Naive mapping

- Human Genome (queries) would take far too long:
- Illumina/Solexa sequencing technology produces 50 - 200 million, 32 - 100 bp short reads
- Mapping these reads to a 3.2 billion bp human genome is a challenge
- Far worse when we allow for Indels and mismatches.
\rightarrow Are optimal alignments (based on quality scores) still feasible?

Principles of mapping reads

Many sequenced reads are redundant!!!
We do not need to search the entire genome each time again.

Book analog

Do not search the entire book, instead search the book index.

Book analog

Do not search the entire book, instead search the book index.

" k-mer" is a substring of length k
For example sequence GGCGATTCATCG:
4-mer GGCG, GCGA CGAT
3-mer GGC, GCG, CGA, GAT

Read mapping through indexing

Most computational time is spent on alignment.

Solution

An index is a data structure that improves the speed of data retrieval operations at the cost of additional storage space to maintain the index data structure.

Pros
Quick search for matches in an entire genome.

Cons
Index structure of the entire genome takes a lot of memory.

Indexing problems

In principle read mapping is to map an exact piece of sequence to the genome.

- Why an exact mapping might not always be what we want.
- Which concerns might you have when mapping genomic sequence?
- Which concerns might you have when mapping transcribed sequence?

Transcriptome versus genome mapping

Indexing problems

Flexibility and constraints:

- Errors versus natural variation: trade-off in error threshold.
- Computational efficiency (time / memory): allowed mismatches / unique mappings.
- Balance between speed, memory and reported mappings.
\rightarrow Indexing is often used for seed matching.
\Rightarrow Indexing method choice is crucial!

Commonly used indexing methods

- Hash-based (BLAST, Salmon, Kallisto)
- Suffix arrays (Salmon, STAR)

A sorted table of all suffixes (substrings) of a given string

- Burrows-Wheeler Transform (BWA, SOAP2, Bowtie2, Hisat)

A compressed form of suffix arrays

"Seed-and-extend " approach

(1) find the best possible match of a seed in an index made up from the reference genome
(2) every matched seed is extended on both sides by optimal local alignment

Common software
STAR, HISAT2, BLAT

What are the characteristics of eukaryotic transcripts?

Hurdles for a transcriptome analysis?

There are currently 569 tracks tumed off
There are currently 569 tracks tumed off
Ensembl Homo sapiensversicn 87.38(GRCh 38 .p7) Chromosome 17: 64,852,937-64,920.000

- Splicing (Introns, Exons)
- Poly-A
- Cap-complex
- ... many more

Splice-aware genome mapping

There are many mappers, but they must be able to detect splice junctions to be used in transcriptome assembly and quantification.

Common splice-aware alignment software
STAR, HISAT2, BLAT, TopHat (based on Bowtie2), Segemehl

Multimappers

- Reads that align to multiple locations

- How to handle multi-mapped reads? Depends on tool:
- Map to best region (but what is "best "? And what about ties?)
- Map to all regions
- Map to one region randomly
- Discard read
- How do we determine best region (primary alignment)?
- Assign alignment score to every mapping

Aligner's speed

Aligner's accuracy

Baruzzo et al. "Simulation-based comprehensive benchmarking of RNA-seq aligners. " Nature Methods 2017

Gene-level/Exon-level quantification

Union

- Count reads mapping to a genomic feature
- Read counts $=$ gene expression
- What about transcripts?

Common read counting software
featureCounts, HTSeq

Transcriptome assembly

Why assembling?

Quantification of different gene isoforms

000
\square |IIIIIIIII\||IIIII \square

Exon number: 8
Amino acid codingNumber: 489

Uncertainties in transcript-level quantification

- we do not expect unique regions but sets of transcripts
- a read can match several transcripts (short reads)
- read abundance from different genes and transcripts spans several orders of magnitude
- experiments can be without information about strand
- reads originate from mature RNA (mRNA and ncRNA) and from incompletely spliced precursor RNA
\Rightarrow Assembly

The assembly process
Reference based (comparative) $O R$ De novo

Messy biology

- Missing pieces
- Sequencing errors
- Experimental biases

Brainstorming: Transcript assembly

Given reads:
(1) AAAACCCC
(2) CCCCGG
(3) GGUUUUUUUU
(4) UUCUUUAAAA

Brainstorming: Transcript assembly

Given reads:
(1) AAAACCCC
(2) CCCCGG
(3) GGUUUUUUUU
(4) UUCUUUAAAA

> AAAACCCC GGUUUUUUUU
> CCCCGGGG UUCUUUUAAAA

Or with error tolerance:

$$
\begin{array}{cc}
\text { AAAACCCC } & \text { GGUUUUUUUUU } \\
\text { CCCCGGGG UUCUUUUAAAA }
\end{array}
$$

Greedy algorithm

We pick two strings s_{i} and s_{j} with largest overlap from the set of all reads (breaking ties arbitrarily) and replace them with their merge. Stop when there is only one string left.

Greedy algorithm

We pick two strings s_{i} and s_{j} with largest overlap from the set of all reads (breaking ties arbitrarily) and replace them with their merge. Stop when there is only one string left.

Terrible idea for transcriptome assembly! Why?

Why to use graphs for assembly?

Say a sequencer produces \mathbf{d} reads of length \mathbf{n} in one sequencing run from a genome of length \mathbf{m} :
d 6×10^{9} reads
n 100 nt
m 3×10^{9} nt \sim human
Task: Glue overlapping reads together to recover biology.
\rightarrow Combinatorical problem best solved by graph theory!
NGS library Graph Genome

De novo assembly

De Bruijn graph (I):

a Generate all substrings of length k from the reads

| ACAGC | TCCTG | GTCTC | |
| :---: | :---: | :---: | :---: | :---: |
| CACAG | TTCCT | GGTCT | |
| CCACA | CTTCC | TGGTC | TGTTG |
| CCCAC | GCTTC | CTGGT | TTGTT |
| GCCCA | CGCTT | GCTGG | CTTGT |
| CGCCC | GCGCT | TGCTG | TCTTG |
| CCGCC | AGCGC | CTGCT | CTCTT |
| ACCGC | CAGCG | CCTGC | TCTCT |

$\left.\begin{array}{cccc}\text { AGCGC } & \text { CTCTT } & \text { GGTCG } \\ \text { CAGCG } & \text { CCTCT } & \text { TGGTC } \\ \text { TCAGC } & \text { TCCTC } & \text { TTGGT } \\ \text { CTCAG } & \text { TTCCT } & \text { GTTGG } \\ \text { CCTCA } & \text { CTTCC } & \text { TGTTG } & \\ \text { CCCTC } & \text { GCTTC } & \text { TTGTT } & \text { CGTAG } \\ \text { GCCCT } & \text { CGCTT } & \text { CTTGT } & \text { TCGTA } \\ \text { CGCCC } & \text { GCGCT } & \text { TCTTG } & \text { GTCGT }\end{array}\right]$ k-mers (k=5)

ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG CGCCCTCAGCGCTTCCTCTTGTTGGTCGTAG - Reads
b Generate the De Bruijn graph

De Bruijn graph (II):

c Collapse the De Bruijn graph

d Traverse the graph

e Assembled isoforms
ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTGGTCGTAG
--.... ACCGCCCACAGCGCTTCCT-------- - CTTGTTGGTCGTAG
----- ACCGCCCTCAGCGCTTCCT---------CTTGTTGGTCGTAG
------ ACCGCCCTCAGCGCTTCCTGCTGGTCTCTTGTTGGTCGTAG

De novo based methods

Applications

Organisms with poor reference genomes or no reference genome; independent of correct splice sites or intron length

Pros
Identification of novel transcripts; no reference needed

Cons

Computationally intensive; requires high read depth; sensitive to sequencing errors, chimeric molecules and contamination; Sensitive to transcripts from highly similar genes (e.g. paralogues)

Common software
Trinity

Reference based assembly

Overlap graph (I):
a Splice-align reads to the genome

b Build a graph representing alternative splicing events

Reference based assembly

Overlap graph (II):
c Traverse the graph to assemble variants

d Assembled isoforms

Reference based assembly

Applications

Organisms with good reference genomes, except perhaps polyploid organisms

Pros

Low computational resources (can be run in parallel, not much memory);
Contamination not a major issue; Very sensitive even with low abundant transcripts (less coverage needed)

Cons

Reference dependant (quality of reference assembly); known splice site dependant; long introns may be predicted; mismatch between reference used and our sample (e.g. cancer)

Common software
Cufflinks, StringTie

Combined methods

Combining both de novo (Assemble) and reference based (Align) strategies is sometimes the best method:

Assembly QC

Evaluating assembly quality is as important as the assembly itself!

- Assembly quality depends on
(1) Coverage: low coverage is mathematically hopeless
(2) Repeat composition: high repeat content is challenging
(3) Read length: longer reads help resolve repeats
(4) Sequencing errors: reduced coverage and more false positives

Alignment-free methods ("pseudoaligners")

(1) Focus: Only annotated transcripts (not entire genome!)
(2) Pseudoalign: K-mer composition of reads/transcripts
(3) Abundance estimation
(4) GC-content, transcript position correction included (e.g. 3' end degragation)

Pros

dramatic increase in speed; improvements in accuracy for gene-level quantification
Cons
absolute reliance on a precise and comprehensive transcript annotation; no information on where each read is mapping

Common software
Salmon, Kallisto, Sailfish

Transcript-level quantification

- Quantify per transcript (not just exon or gene)
- ! Beware of annotation quality
- Suggested reading: CSAMA tutorial, Zhang et al. "Evaluation and comparison of computational tools for RNA-seq isoform quantification." BMC Genomics 2017
Common software
RSEM, Cufflinks, Kallisto, Salmon, Sailfish
Fig: https://www.gtexportal.org/home/gene/SLC25A3

Method overview for mapping and assembly and quantification

De novo

 Assembly

Summary

- Tradeoff between accuracy and speed of read alignment algorithm
- Be aware how your choice of mapping tools effects your results
- How are mismatches handled?
- How are multi-mapped reads handled?
- Gene-level abundance estimates and statistical inference offer advantages over transcript-level analyses in terms of performance and interpretability
- If isoform detection is the research goal then consider long-read sequencing technologies (e.g. PacBio, Oxford Nanopore)

Expression analysis

Count matrix

| SRR1039508 SRR1039509 SRR1039512 | SRR1039513 SRR1039516 SRR1039517 | SRR1039520 SRR1039521 | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 679 | 448 | 873 | 408 | 1138 | 1047 | 770 | 572 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 467 | 515 | 621 | 365 | 587 | 799 | 417 | 508 |
| 260 | 211 | 263 | 164 | 245 | 331 | 233 | 229 |
| 60 | 55 | 40 | 35 | 78 | 63 | 76 | 60 |
| 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 |
| 3251 | 3679 | 6177 | 4252 | 6721 | 11027 | 5176 | 7995 |
| 1433 | 1062 | 1733 | 881 | 1424 | 1439 | 1359 | 1109 |
| 519 | 380 | 595 | 493 | 820 | 714 | 696 | 704 |
| 394 | 236 | 464 | 175 | 658 | 584 | 360 | 269 |
| 172 | 168 | 264 | 118 | 241 | 210 | 155 | 177 |
| 2112 | 1867 | 5137 | 2657 | 2735 | 2751 | 2467 | 2905 |
| 524 | 488 | 638 | 357 | 676 | 806 | 493 | 475 |
| 71 | 51 | 211 | 156 | 23 | 38 | 134 | 172 |
| 555 | 394 | 905 | 415 | 727 | 697 | 618 | 599 |
| 10 | 2 | 9 | 2 | 10 | 6 | 5 | 5 |
| 1660 | 1251 | 2259 | 1079 | 2462 | 2514 | 1888 | 1660 |
| 59 | 54 | 66 | 23 | 84 | 87 | 31 | 59 |
| 729 | 692 | 943 | 475 | 1034 | 1163 | 731 | 744 |
| 201 | 161 | 256 | 99 | 268 | 257 | 160 | 137 |
| 3 | 0 | 3 | 1 | 4 | 0 | 0 | 1 |

Estimation of gene expression

You are analyzing 2 genes (gene A and B) in two conditions (condition 1 and 2) on the bases of an RNA-seq experiment that resulted in the following number of reads:

	Condition 1	Condition 2
Gene A	1000	3000
Gene B	2000	4000

Are the following statements correct:
a Both genes A and B are more expressed in condition 2.
(b) Gene B is more expressed than gene A.

Estimation of gene expression

We cannot state any such thing since we do not know
(a) sequencing depth (library size),
expression of all other genes within the sample
(b) gene length, the longer the gene, more reads will be mapped
c GC content

Estimation of gene expression

We cannot state any such thing since we do not know
(a) sequencing depth (library size),
expression of all other genes within the sample
(b) gene length,
the longer the gene, more reads will be mapped
c GC content

Solution: Control (Normalize) for
(1) sequencing depth
(2) compositional bias

Normalization

$R=$ Reads count for the gene
$G=$ Gene length in kilobases
$T=$ Total number of mapped reads in a sample

Reads Per Kilobase transcript per Million mapped reads (RPKM):
$R P K M=\frac{\left(\frac{R}{T / 10^{6}}\right)}{G}$
RPKM is used for single end reads
FPKM is similar measure used for paired end reads.

Tags Per Million (TPM):
$T P M=\frac{\frac{R}{G}}{\left(\frac{\sum_{\text {all genes }} \frac{R}{6}}{10^{6}}\right)}=\frac{R P K M}{\sum R P K M}$

Counts Per Million (CPM):

$C P M=\frac{R * 10^{6}}{T}$

- RPKM/FPKM: First metric used in the old times (e.g. cufflinks).
- TPM: Alternative to RPKM/FPKM. Total TPM counts are equal to 1 M .
- CPM: Similar to TPM as it adds up to 1 M , but does not consider gene lengths. The most applied metric in the field.

Normalization

- Use raw counts for DE analysis using DGE packages (e.g. DESeq2, edgeR) as normalization is done internally
- RPKM/FPKM/TPM/CPM are not recommended for DE analysis.
- TPM/CPM are great for visual exploration of data (heatmaps, abundance comparisons, PCA/MDS plots).
- Sum of all TPMs/CPMs is constant (1 million)
- Median of Ratios (DESeq2) and TMM (edgeR) methods perform the best for DGE
- other solutions: spike-ins/house-keeping genes

Normalization for DE

Assumption: most genes are not differential expressed

DESeq2's sample-wise sizefactor:

DESeq2 scaling factor for a given sample is computed as the median of the ratio, for each gene, of its read count over its geometric mean across all libraries.

DESeq Bioconductor package $>$ estimateSizeFactors $>$ sizeFactors

Trimmed Mean of M-values (TMM):

edgeR Bioconductor > calcNormFactors > estimateCommonDisp > estimateTagwiseDisp

Transformation of sequencing-depth-normalized read counts

$\log _{2}$ transformation:

Transformation incl variance shrinkage:

For clustering, heatmaps etc use VST (DESeq2), VOOM (limma) or RLOG (DESeq2) Challenge your data by different normalization methods \rightarrow robustness of DGE analysis

Explore global and local read count patterns (feature selection)

(1) unsupervised
no a priori information is needed
\rightarrow to detect technical noise and batch effects

- Dimensional reduction \rightarrow Principle Component Analysis (PCA)
- Clustering \rightarrow hierarchical, k-means

PCA and clustering should be done on normalized and transformed read counts so that high variability of low read counts does not occlude potentially informative data trends.
(2) supervised
usage of known biological labels
\rightarrow differential expression

Principle component analysis - PCA

- transforms measurements into new variables that are truly independent
- new variables of most variance are the principal components
- dimensionality reduction

Applications:

- visualization of your data in lower dimensions (2D, 3D)
- find patterns in numeric data
- identify batch effects or other possible covariates (e.g. male and female) by labeling them

PCA to detect batch effects

- PC1 separates the genotype (group of interest); however
- PC2 separates the batch effect (or other covariates)
- e.g. experiment date, sex, experimenter, different RNA isolation kit (you name it!)
- When batch effect is observed in PCA plots, add it as covariate to your GLM
- ~Batch + Genotype

Clustering

There are several clustering algorithms and more are being developed. Why?

Clustering

There are several clustering algorithms and more are being developed. Why?

- No clustering algorithm is perfect
- Remember! Always "see" your data and judge if the clusters make sense
- The performance of the clustering algorithm depends on the structure of your data

Ronan et al. "Avoiding common pitfalls when clustering biological data" Science Signalling 2016

Finding patterns in your data
Let's assume that you got these 4 genes differentially expressed in your dataset

Raw data

101.00	101.00	102.00	103.00	101.00	110.00	112.00	111.00	109.00	112.00	gene_1	100
10.10	10.20	10.20	10.10	10.10	11.10	11.00	10.90	10.90	11.20	gene_2	80
10.00	12.00	11.00	9.00	12.00	2.00	5.00	4.00	6.00	5.00	gene_3	
11.20	10.90	10.90	11.00	11.10	10.10	10.10	10.20	10.20	10.10	gene_4	
						$\begin{aligned} & \stackrel{\rightharpoonup}{\Phi} \\ & \stackrel{\sim}{3} \\ & \stackrel{\rightharpoonup}{亏} \end{aligned}$					40 20
					,	'N	${ }^{1} \omega$	${ }^{+}$	'ror		

Can you identify a pattern?

Finding patterns in your data

What about now?

gene

- gene_1
\rightarrow gene_2
-- gene_3
-- gene_4

Finding patterns in your data

Perhaps this gives you a better hint

Z-score

$$
\begin{array}{ll}
z=\frac{x-\mu}{\sigma} & \mu=\text { mean } \\
\sigma=\text { standard deviation }
\end{array}
$$

Centering data

$$
x-\mu
$$

Centered

-5.20	-5.20	-4.20	-3.20	-5.20	3.80	5.80	4.80	2.80	5.80	gene_1
2.40	4.40	3.40	1.40	4.40	-5.60	-2.60	-3.60	-1.60	-2.60	gene_3
-0.48	-0.38	-0.38	-0.48	-0.48	0.52	0.42	0.32	0.32	0.62	gene_2
0.62	0.32	0.32	0.42	0.52	-0.48	-0.48	-0.38	-0.38	-0.48	gene_4
$\begin{gathered} 0 \\ \frac{0}{7} \\ \stackrel{\rightharpoonup}{\mathbf{0}} \\ \mathrm{I}^{2} \end{gathered}$	$\begin{gathered} \text { O} \\ \text { O} \\ \text { In } \\ \text { IN } \end{gathered}$			$\begin{gathered} \text { o} \\ \frac{0}{\overrightarrow{7}} \\ \text { İ } \end{gathered}$						

Scaling data

$$
\frac{x}{\sigma}
$$

Scaled

1.14	1.36	1.25	1.02	1.36	0.23	0.57	0.45	0.68	0.57	gene_3	
1.00	0.98	0.98	0.99	0.99	0.90	0.90	0.91	0.91	0.90	gene_4	
0.90	0.90	0.91	0.92	0.90	0.98	1.00	0.99	0.97	1.00	gene_1	
0.90	0.91	0.91	0.90	0.90	0.99	0.99	0.98	0.98	1.00	gene_2	
	$\begin{gathered} \text { ò } \\ \stackrel{\rightharpoonup}{\mathbf{0}} \\ \text { IN } \end{gathered}$	$\begin{aligned} & \text { O} \\ & \frac{0}{\overline{1}} \\ & \text { I } \\ & \text { In } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{7} \\ & \text { IO } \\ & \text { I' } \end{aligned}$							0.6 0.4

Z-score

$$
z=\frac{x-\mu}{\sigma}
$$

z-score (centered \& scaled)

-1.05	-1.05	-0.85	-0.64	-1.05	0.77	1.17	0.97	0.56	1.17	gene_1	1
-1.01	-0.80	-0.80	-1.01	-1.01	1.10	0.89	0.68	0.68	1.31	gene_2	0.5
0.66	1.21	0.94	0.39	1.21	-1.54	-0.72	-0.99	-0.44	-0.72	gene_3	0
	0.68	0.68	0.89	1.10	-1.01	-1.01	-0.80	-0.80	-1.01	gene_4	
				$\begin{gathered} \circ \\ \frac{O}{\overrightarrow{7}} \\ \text { IO } \end{gathered}$	$\begin{aligned} & \overrightarrow{\bar{D}} \\ & \stackrel{\text { N }}{3} \\ & \stackrel{\rightharpoonup}{\mathbb{D}} \end{aligned}$						-1
											-1.5

Hierarchical clustering

- No need for pre-defining the number of clusters
- Results dependent on
(1) distance metric: euclidean, manhattan, Pearson correlation etc.

2 clustering method: Ward, complete, average etc.

- Used with heatmaps, thus allows better visual inspection of data

Differential expression (DE)

Common scientific question:

Quantification and statistical inference of systematic changes between conditions.
Principles are the same as for all other significance tests:
(1) Use the replicates (samples of the same conditions) to estimate the within-condition variability.(variance) of the expression
(2) Use the expression and variance to test whether the difference between conditions is random or not

The test's statistical power increases with more biological (and technical) replicates!

Differential expression (DE)

Linear regression model (LM) is evaluated for every gene: $Y=b_{0}+b_{1} * x+e$

Y ... describes all read counts for a gene $b_{0} \ldots$ average of the baseline group $x \ldots$ condition (for RNA-seq often 0 or 1)
e ... error or uncertainty
$b_{1} \ldots$ coefficent that captures the difference between different conditions
\rightarrow the closeness of b_{1} to zero will be evaluated during statistical testing steps
\rightarrow DESeq2 and edgeR use a generalized linear model (GLM)

Parametric vs. non-parametric methods

It would be nice to not have to assume anything about the expression value distributions but only use rank-order statistics.

However, it is (typically) harder to show statistical significance with non-parametric methods with few replicates (less than 10?).

Issues with DE testing for RNA-seq

Couldn't we just use a Student's t-test for each gene?
(1) Distribution is not normal. Which parametric distribution should I use?
(2) Variance across groups may not be homogeneous e.g. unequal group size
(3) The number of replicates is often too small to estimate the variance.
(4) If we test each gene for DE, we have to account for multiple testing!

Which parametric distribution should I use?

Models for read counts originated from the idea that each read is sampled independently from a pool of reads and hence the number of reads for a given gene follows a ...

Binomial distribution

The binomial distribution works when we have a fixed number of trials n, each with a constant probability of success p.

The random variable X is the number of k successes:

$$
p(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Event: An RNA-seq read "lands" in a given gene (success) or not (failure)

Poisson distribution

RNA-seq experiments produce large number of reads (n is large) and probabilities of success are small (p is small) which can be modelled by the poisson distribution which is an approximation of the binomial.

Instead we know the average number of successes per intervall:

$$
\lambda=n p
$$

For $X \sim \operatorname{Poisson}(\lambda)$, both the mean and the variance are equal to λ.

Poisson versus negative binomial distribution

Many studies have shown that the variance grows faster than the mean in RNAseq data. This is known as overdispersion.

Negative binomial distribution

The negative binomial distribution works for discrete data over an unbounded positive range whose sample variance exceeds the sample mean.

The random variable X is the number of trials needed to make n successes (read counts) if the probability of a single success is p :

$$
N B(X=x)=\binom{x-1}{n-1} p^{n}(1-p)^{x-n}
$$

Design \& contrast matrix

Design matrix (a.k.a. model matrix) has 2 main roles:
(1) defines the form of the model, or structure of the relationship between genes and explanatory variables
(2) is used to store values of the explanatory variable(s)

Contrast matrix is used for:
(1) identifying the differences (contrast) between explanatory variables e.g. group ${ }_{1}$ vs group $_{2}$

Multiple testing issue

		WE FOUNDNO LINK BETWEEN JELIY BEANS AND ACNE ($P>0.05$).	THAT S	TES THAT. EAR IT'S ONLY CERTAIN COLOR CAUSES IT. TS! MIIINECARF
WE FOUNDNO LINK BETWEEN purfle Jeur BEANS PND PGNE ($p>0.05$).	WE FOUNDNO LINK BEWEEN BROWN Jeur BEANS PND ACNE ($P>0.05$).	WE FOUNDNO LNK BETWEEN pink Jelur BEANS AND ACNE ($P>0.05$).	WE FOUNDNO LINK BETWEEN bue Jeur BEANS FND AONE ($P>0.05$).	WE FOUNDNO LINK BETWEEN TEAL Jeur BEPNS AND AGNE ($P>0.05$).
WE FOUNDNO LINK BETWEEN SALMON JELY BEANS PND AONE ($P>0.05$).	WE FOUNO NO LINK BETWEEN RED Jeluy BEANS AND AONE ($P>0.05$).	WE FOUNDNO UNK BETWEEN TURGUOISE JELIY CEFASS AND AGNE ($P>0.05$).	WE FOUNDNO LINK BETWEEN magenta jelly BEANS AND AONE ($P>0.05$).	WE FOUNDNO LINK BETWEEN YELOW JELY BEANS AND ACNE ($p>0.05$).

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$
- If you run a test with $20(\mathrm{n})$ genes: $\beta_{\text {multiple }}=(1-\alpha)^{n}=0.95^{20}=0.36$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$
- If you run a test with $20(\mathrm{n})$ genes: $\beta_{\text {multiple }}=(1-\alpha)^{n}=0.95^{20}=0.36$
- Likewise, type-I error for multiple comparisons become:
$\alpha_{\text {multiple }}=1-(1-\alpha)^{n}=0.64$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$
- If you run a test with $20(\mathrm{n})$ genes: $\beta_{\text {multiple }}=(1-\alpha)^{n}=0.95^{20}=0.36$
- Likewise, type-I error for multiple comparisons become:

$$
\alpha_{\text {multiple }}=1-(1-\alpha)^{n}=0.64
$$

- If the number of tests (m) increases, the type-l error rate $\alpha_{\text {multiple }}$ will reach to 1
- This inflation of α has to be handled by multiple testing correction for p-values
- Most applied method for omics studies is Benjamini-Hochberg method (a.k.a. False Discovery Rate, FDR)

Implementation of DE testing for RNA-seq

- Seq. depth normalization: DESeq2 uses sample-wise size factor, edgeR and Limma-Voom use TMM
- Assumed distribution: edgeR and DESeq model the count data using a negative binomial distribution and use their own modified statistical tests based on that. Limma-Voom uses log-normal distribution and t-test.
- Dispersion estimate: edgeR, DESeq2, Limma-Voom (in slightly different ways) "borrow" information across genes to get a better variance estimate.
- Multiple testing issue: All current packages report false discovery rate FDR (most often Benjamini-Hochberg corrected p values).

DESeq2

0 Find confounding effects by PCA, sva package or RUVSeq package
(1) Model known batches or other possible covariates in the LM/GLM model $>$ design formula, e.g. \sim sex + condition
(2) Estimate size factors $>$ estimateSizeFactors()
(3) Estimate gene-wise dispersion > estimateDispersions()
(4) Fit curve to gene-wise dispersion estimates
(5) Shrink gene-wise dispersion estimates
(6) GLM fit for each gene
(7) Wald test $>$ nbinomWaldTest()

8 Results $\log 2$ fold changes (LFC) and adjusted p-values for each gene $>$ results()
(9) Summary of DE genes, e.g. LFC >0 (up) and adj. pvalue $<0.1>$ summary()

Visualization of DE analysis

MA-plot
$>\operatorname{plotMA}()$

mean of normalized counts

Normalised counts
> plotCounts()
ENSG00000189221.9

Summary

- Always challenge your data, think of plausible technical explanation first
"I'm a scientist and I know what constitutes proof. But the reason I call myself by my childhood name is to remind myself that a scientist must also be absolutely like a child. If [they] see a thing, [they] must say that [they] see it, whether it was what [they] thought [they] were going to see or not. See first, think later, then test. But always see first. Otherwise you will only see what you were expecting. Most scientists forget that. "
- adapted from The Ultimate Hitchhiker's Guide to the Galaxy by Douglas Adams

PhD course "Bioinformatics analysis of gene expression data (BAGED)"
(1) Do you have your own bulk or single-cell RNA-seq data of a vertebrate?
(2) Do you want to learn how to analyze your data yourself?
(3) What? 2 to 3 weeks of lectures, tutorials and most importantly student projects
(4) Hardware and Software? UCloud, (Galaxy), R, Cytoscape
(5) When? BAGED-bulk January 2024; BAGED-single March 2024
(6 Sign up early due to limited number of seats (Oct-Nov)

