STATISTICAL METHODS IN BIOINFORMATICS

Analysis of RNA sequencing data

Stefan E Seemann
ses@sund.ku.dk

Center for non-coding RNA in Technology and Heath (http://rth.dk) Dep. of Veterinary and Animal Sciences, SUND, University of Copenhagen DK

10 April 2024

Why sequencing?

- Assemble the genome and transcriptome of a species
- Find genomic variation in a population
- Find genomic and transcriptomic associations with diseases and phenotypes
- Find organisms in environmental sample \rightarrow metagenomics and -transcriptomics
- Identify potential drug targets \rightarrow personalized medicine
- Tracking of virus variants and mutations \rightarrow vaccine development
\Rightarrow One of the biggest hammers in the tool box right now - always ask could this experiment be done using sequencing instead?

What is your application?

The beginning

- 1968 - The first 12 bases
- 1973 - 24 bases of the lactose-repressor binding site \rightarrow two years of work: one base per month
- 1977 - Sanger sequencing and Gilbert sequencing \rightarrow The Nobel Prize in Chemistry 1980 for Frederick Sanger and Walter Gilbert

Evolution of sequencing technologies

Today's programme

Alignment and mapping

0815-0900 Lecture Alignment methods

0900-1000 Exercise Dynamical programming of pairwise alignment (on paper)
1000-1030 Lecture Read mapping

Feature abundance and differential expression

1030-1100

1445-1500

Lecture Normalization + Transformation
Lunch
Lecture Unsupervised + Supervised data exploration
Exercise Differential expression analysis (in R)
Summary and Discussion

Alignment methods

Where do we need sequence alignments?

Where do we need sequence alignments?

- Sequence similarity
- Gene finding by similarity
- Protein structure by similarity
- RNA structure by similarity
- Motif finder
- Genome and transcriptome assembly
- Gene expression estimation

Evolutionary events

- DNA sequences change in time.
- Find evolutionary related sequences.
- Evolutionary events:

```
CAGTCATG \xrightarrow{ INsertion CACTGTCATG }{\mathrm{ DEletioN }}\mathrm{ CACTGTCTG}
\xrightarrow { \text { SuBSTITUTION CACTATCTG} }
```



```
CATTGACGTG
```


Evolutionary tree

- Finding common ancestors.
- Parsimony principle: Evolution uses minimum number of operations.

- Probabilistic approaches (max. likelihood or sampling).

Alignments: optimize a score

CACTGTCATG
Score of a given alignment:
CA--GTC-CG
$S_{\text {tot }}=S\left[\begin{array}{l}\mathrm{C} \\ \mathrm{C}\end{array}\right]+S\left[\begin{array}{l}\mathrm{A} \\ \mathrm{A}\end{array}\right]+S\left[\begin{array}{l}\mathrm{C} \\ -\end{array}\right]+S\left[\begin{array}{l}\mathrm{T} \\ -\end{array}\right]+S\left[\begin{array}{l}\mathrm{G} \\ \mathrm{G}\end{array}\right]+S\left[\begin{array}{l}\mathrm{T} \\ \mathrm{T}\end{array}\right]+S\left[\begin{array}{l}\mathrm{C} \\ \mathrm{C}\end{array}\right]+S\left[\begin{array}{l}\mathrm{A} \\ -\end{array}\right]+S\left[\begin{array}{l}\mathrm{T} \\ \mathrm{C}\end{array}\right]+S\left[\begin{array}{l}\mathrm{G} \\ \mathrm{G}\end{array}\right]$

- Score: substituting a residue in one seq. with a residue in another.
- Find the alignment that have the highest score.
- Try out all alignment combinations? (we deal with this soon)
- So speed of sequence comparisons matters!

Score matrices for DNA

- Identity: 8
- Transition: 2 (eg. $\{\mathrm{A}, \mathrm{G}\} \rightarrow:\{\mathrm{A}, \mathrm{G}\}$; purine to purine)
- Transversion: -3 (eg. $A \rightarrow\{C, T\}$; purine to pyrimidine).

	A	C	G	T
A				
C				
G				
T				

What about gaps?

- Gap cost. Cost of indel (Eg. $d=10$).
- Initiation and elongation.

Dynamical programming

- Find the alignment between CACTGTCATG and CAGTCTG that has the maximal score?
- What would be a trivial way?

Dynamical programming

- Find the alignment between CACTGTCATG and CAGTCTG that has the maximal score?
- What would be a trivial way?
- Basic idea: Use sub sequences! \rightarrow Dynamic Programming

Pairwise global alignments (Needleman-Wunsch)

Comparing sequences a and b. Given a substitution score $s(x, y)$ of replacing letter x with letter y, the highest scoring alignment can be found by the following recursion:

$$
S(i, j)=\max \left\{\begin{array}{l}
S(i-1, j-1)+s\left(a_{i}, b_{j}\right) \\
S(i-1, j)-d \\
S(i, j-1)-d
\end{array}\right.
$$

a_{i} residue at position i in seq. a b_{j} residue at position j in seq. b

$$
i=1, \ldots, N ; j=1, \ldots, M
$$

Initialization: $S(0,0)=0$. Hence: $S(i, 0)=-i d, S(0, j)=-j d$. Note: the alignment takes time $O(N M)$.

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0										
C											
A											
G											
T											
C											
T											
G											

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10										
A	-20										
G	-30										
T	-40										
C	-50										
T	-60										
G	-70										

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2									
G	-30	-12									
T	-40	-22									
C	-50	-32									
T	-60	-42									
G	-70	-52									

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8							
C	-50	-32	-14	4							
T	-60	-42	-24	-6							
G	-70	-52	-34	-16							

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

		C	A	C	T	G	T	C	A	T	G
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
C	-10	8	-2	-12	-22	-32	-42	-52	-62	-72	-82
A	-20	-2	16	6	-4	-14	-24	-34	-44	-54	-64
G	-30	-12	6	13	3	4	-6	-16	-26	-36	-46
T	-40	-22	-4	8	21	11	12	2	-8	-18	-28
C	-50	-32	-14	4	11	18	13	20	10	0	-10
T	-60	-42	-24	-6	12	8	26	16	17	18	8
G	-70	-52	-34	-16	2	20	10	23	18	14	26

Back-tracking ...

Pairwise local alignments (Smith-Waterman)

Comparing sequences a and b. Given a substitution score $s(x, y)$ of replacing letter x with letter y, the highest scoring alignment can be found by the following recursion:

$$
S(i, j)=\max \left\{\begin{array}{l}
S(i-1, j-1)+s\left(a_{i}, b_{j}\right) \\
S(i-1, j)-d \\
S(i, j-1)-d \\
0
\end{array}\right.
$$

Note only positive numbers!
$i=1, \ldots, N ; j=1, \ldots, M$

Initialization: $S(0,0)=0$. Hence: $S(i, 0)=$?, $S(0, j)=$?.

Pairwise local alignments (Smith-Waterman)

Comparing sequences a and b. Given a substitution score $s(x, y)$ of replacing letter x with letter y, the highest scoring alignment can be found by the following recursion:

$$
S(i, j)=\max \left\{\begin{array}{l}
S(i-1, j-1)+s\left(a_{i}, b_{j}\right) \\
S(i-1, j)-d \\
S(i, j-1)-d \\
0
\end{array}\right.
$$

Note only positive numbers!
$i=1, \ldots, N ; j=1, \ldots, M$

Initialization: $S(0,0)=0$. Hence: $S(i, 0)=0, S(0, j)=0$.

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0														
A	0														
C	0														
A	0														
G	0														
G	0														
G	0														
G	0														
A	0														
A	0														
A	0														
C	0														
T	0														
G	0														

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	8	8	8	0	0	2	0	0	0	8	8	0	8	2
A	0	8	16	16	6	0	2	0	0	0	8	16	6	8	10
C	0	0	6	13	24	14	4	4	2	2	0	6	24	14	5
A	0	8	8	14	14	21	16	6	1	0	10	8	14	32	22
G	0	2	10	10	11	11	29	19	9	0	2	12	5	22	40
G	0	2	4	12	7	8	19	26	16	6	2	4	9	12	30
G	0	2	4	6	9	4	16	16	23	13	8	4	1	11	20
G	0	2	4	6	3	6	12	13	13	20	15	10	1	3	19
A	0	8	10	12	3	0	8	9	10	10	28	23	13	9	9
A	0	8	16	18	9	0	2	5	6	7	18	36	26	21	11
A	0	8	16	24	15	6	2	0	2	3	15	26	33	34	24
C	0	0	6	14	32	22	12	4	2	4	5	16	34	30	31
T	0	0	0	4	22	40	30	20	12	10	1	6	24	31	27
G	0	2	2	2	12	30	48	38	28	18	12	3	14	26	39

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	8	8	8	0	0	2	0	0	0	8	8	0	8	2
A	0	8	16	16	6	0	2	0	0	0	8	16	6	8	10
C	0	0	6	13	24	14	4	4	2	2	0	6	24	14	5
A	0	8	8	14	14	21	16	6	1	0	10	8	14	32	22
G	0	2	10	10	11	11	29	19	9	0	2	12	5	22	40
G	0	2	4	12	7	8	19	26	16	6	2	4	9	12	30
G	0	2	4	6	9	4	16	16	23	13	8	4	1	11	20
G	0	2	4	6	3	6	12	13	13	20	15	10	1	3	19
A	0	8	10	12	3	0	8	9	10	10	28	23	13	9	9
A	0	8	16	18	9	0	2	5	6	7	18	36	26	21	11
A	0	8	16	24	15	6	2	0	2	3	15	26	33	34	24
C	0	0	6	14	32	22	12	4	2	4	5	16	34	30	31
T	0	0	0	4	22	40	30	20	12	10	1	6	24	31	27
G	0	2	2	2	12	30	48	38	28	18	12	3	14	26	39

Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACAGGGGAAACTG.

		A	A	A	C	T	G	T	T	T	A	A	C	A	G
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	8	8	8	0	0	2	0	0	0	$\mathbf{8}$	8	0	8	2
A	0	8	16	16	6	0	2	0	0	0	8	16	6	8	10
C	0	0	6	13	24	14	4	4	2	2	0	6	24	14	5
A	0	8	8	14	14	21	16	6	1	0	10	8	14	32	22
G	0	2	10	10	11	11	29	19	9	0	2	12	5	22	40
G	0	2	4	12	7	8	19	26	16	6	2	4	9	12	30
G	0	2	4	6	9	4	16	16	23	13	8	4	1	11	20
G	0	2	4	6	3	6	12	13	13	20	15	10	1	3	19
A	0	$\mathbf{8}$	10	12	3	0	8	9	10	10	28	23	13	9	9
A	0	8	16	18	9	0	2	5	6	7	18	36	26	21	11
A	0	8	16	24	15	6	2	0	2	3	15	26	33	34	24
C	0	0	6	14	32	22	12	4	2	4	5	16	34	30	31
T	0	0	0	4	22	40	30	20	12	10	1	6	24	31	27
G	0	2	2	2	12	30	48	38	28	18	12	3	14	26	39

Time is important

- Dynamic programming: exact in $O(N M)$.

When becomes time an issue?

BLAST (Basic Local Alignment Search Tool)

Less accurate than Smith-Waterman, BUT 50 times faster.
Idea: true matches are likely to have short stretches of identity (high score).
(1) List of short words of fixed length that will match the query sequence (word length: 3 for protein; 11 for nucleic acids).
(2) Scan database for these words. Extend matches in both directions in an attempt to find an alignment with a score exceeding S.
Segment pairs whose scores cannot be improved by extending or trimming are called high scoring pairs (HSPs).

What are the default parameter settings of NCBI blastn and megablast?

Which differences in the alignments do you expect based on their parameters?

Alignment score statistics

Question: Given a particular scoring system, how many distinct local alignments with score $\geq S$ can one expect to find by chance from the comparison of two random sequences of lengths m and n ?

Or in other words, when can a local alignment be considered statistically significant?

E-values and P-values

The expected number of local alignments with a score of at least S is given by the E-value for the score S :

$$
E=K m n e^{-\lambda S}
$$

(1) Doubling the length of the query sequence (m) or the size of the database (n) should double the number of local alignments.
(2) E-value decreases exponentially as score S increases.

The probability of observing at least one alignment with score $\geq S$

$$
p=1-e^{-E}
$$

\Rightarrow Sequence similarity score S is extreme value distributed

Summary

- Dynamic programming (DP) saves time in sequence comparisons
- Some assumptions in DP, mention some
- In many applications, heuristics are needed to further speed up the comparison, e.g., use only diagonals in dynamic programming

Exercise: Dynamical programming of pairwise alignment

Complete the dynamic programming matrix of a global alignment:
Align the sequences ACGTG and AACGGTG using a match score of 1 , a mismatch of -4 and a gap cost of -10 .

		A	C	G	T	G
A						
A						
C						
G						
G						
T						
G						

Read mapping

Roadmap for RNAseq analysis

(c) Advanced-analysis

Conesa, Ana, et al. "A survey of best practices for RNA-seq data analysis" Genome Biol. 2016

When becomes time an issue?

- Target is entire genome
- Target is all observed sequences (e.g. RefSeq non-redundant database)
- Query are millions of reads

How many reads do we get from modern Illumina sequencing?

	MiSeq	HiSeq 4000	NovaSeq 6000 S4
Run Time	$4-56$ hours	$2-4$ days	$36-44$ hours
Maximum Output	15 Gb	1500 Gb	$2400-3000 \mathrm{~Gb}$
Average Read Output	$22-25$ million	$250-400$ million	$2,000-2,500$ million
Maximum Read Length	$2 \times 300 \mathrm{bp}$	$2 \times 150 \mathrm{bp}$	$2 \times 150 \mathrm{bp}$

Raw data (Sequencing reads)

The FASTQ format:
@ERR459145.1 DHKW5DQ1:219:DOPT7ACXX:2:1101:1590:2149/1
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGC
$+$
@7DBADDDBH?DHHI@DHHHHEGHIIIGGIFFGIBFAAGAFHA'5?B@D

- @: begin header
- 2:1101 flowcell lane 2, tile 1101
- x and y coordinates: 1590:2149
- $/ 1$ single-end reads; /1 and /2 paired-end (mate-paired) reads
- read sequence
- quality encoded ASCII characters

What is read mapping?

Determine position of a short read on the reference genome or transcriptome.

$$
\begin{array}{lll}
\text { Reference: } & \ldots \text { AA-CGCCTT... } & \text { I } \\
& \text { I:-:||||| match } \\
\text { Read }: & \text { AGGGGCCTT } & \text { : }=\text { mismatch } \\
& & =\text { gap }
\end{array}
$$

Naive mapping

Search for query at each position in reference genome ACGTTACCGAATCGATCAAAGTCGA GTTA
$\mathrm{m}=$ query length, $\mathrm{n}=$ genome length

Naive mapping

Search for query at each position in reference genome ACGTTACCGAATCGATCAAAGTCGA GTTA
$\mathrm{m}=$ query length, $\mathrm{n}=$ genome length

Naive mapping

Search for query at each position in reference genome ACGTTACCGAATCGATCAAAGTCGA

GTTA :)
$\mathrm{m}=$ query length, $\mathrm{n}=$ genome length \rightarrow Time: $O(\mathrm{mn})$

Naive mapping

- Human Genome (queries) would take far too long:
- Illumina/Solexa sequencing technology produces 50 - 200 million, 32 - 100 bp short reads
- Mapping these reads to a 3.2 billion bp human genome is a challenge
- Far worse when we allow for Indels and mismatches.
\rightarrow Are optimal alignments based on quality scores still feasible?

Principles of mapping reads

- Most computational time is spent on alignment.
- Many sequenced reads are redundant
- We do not need to search the entire genome each time again.

Book analog

Do not search the entire book, instead search the book index.

INDEX

" k-mer" is a substring of length k
For example sequence GGCGATTCATCG:
4-mer GGCG, GCGA CGAT
3-mer GGC, GCG, CGA, GAT

Read mapping through indexing

In principle read mapping is to map an exact piece of sequence to the genome.

Solution

An index is a data structure that improves the speed of data retrieval operations at the cost of additional storage space to maintain the index data structure.

Pros
Quick search for matches in an entire genome.

Cons
Index structure of the entire genome takes a lot of memory.

Why might an exact mapping not always be what we want?

Which concerns might you have when mapping genomic sequence?

Which concerns might you have when mapping transcribed sequence?

Indexing problems

Flexibility and constraints:

- Errors versucannots natural variation:
trade-off in error threshold.
- Computational efficiency (time / memory):
allowed mismatches / unique mappings.
- Balance between speed, memory and reported mappings.

Indexing method choice is crucial!

- Hash-based (BLAST, Salmon, Kallisto)
- Suffix arrays (Salmon, STAR)

A sorted table of all suffixes (substrings) of a given string

- Burrows-Wheeler Transform (BWA, SOAP2, Bowtie2, Hisat)

A compressed form of suffix arrays

Indexing is often used for seed matching

"Seed-and-extend " approach
(1) find the best possible match of a seed in an index made up from the reference genome
(2) every matched seed is extended on both sides by optimal local alignment

Common software
STAR, HISAT2, BLAST

Transcriptome versus genome mapping

Splice-aware genome mapping

There are many mappers, but they must be able to detect splice junctions to be used in transcriptome assembly and quantification.

Common splice-aware alignment software
STAR, HISAT2, BLAT, TopHat (based on Bowtie2), Segemehl

Sashimi Plot: Visualization of spliced reads

000
\square |IIIIIIIIII\|।IIIII \square

Exon number: 8
Amino acid codingNumber: 489

Aligner's speed

Aligner's accuracy

Baruzzo et al. "Simulation-based comprehensive benchmarking of RNA-seq aligners. " Nature Methods 2017

Quantification - estimation of expression

Quantification:
Count reads mapping to a genomic feature (gene, transcript, exon etc)
\rightarrow genomic features can be annotated (e.g., NCBI RefSeq genome annotation) or be predicted (e.g., transcriptome assembly)

Assumption:
Number of reads produced from a feature \sim feature's relative abundance in the sample

Gene-level quantification

- By default ambiguous reads are not counted
- By default multi-mapping reads (reads aligning with multiple locations) are not counted

Common read counting software
featureCounts, HTSeq

Ambiguous

Ambiguous

Transcript-level quantification

Quantify per transcript (not just exon or gene)

Why is it important for transcript-level quantification to consider ambiguous reads?

Transcript-level quantification

- Statistical methods are used to find the probability that a read originates from a specific transcript.
- ! Beware of annotation quality
- Suggested reading: CSAMA tutorial, Zhang et al. "Evaluation and comparison of computational tools for RNA-seq isoform quantification." BMC Genomics 2017

Common software
RSEM, Cufflinks, Kallisto, Salmon, Sailfish

Alignment-free methods ("pseudoaligners")

(1) Focus: Only annotated transcripts (not entire genome!)
(2) Pseudoalign: K-mer composition of reads/transcripts
(3) Abundance estimation
(4) GC-content, transcript position correction included (e.g. 3' end degragation)

Pros

dramatic increase in speed; improvements in accuracy for gene-level quantification
Cons
absolute reliance on a precise and comprehensive transcript annotation; no information on where each read is mapping

Common software
Salmon, Kallisto, Sailfish

Summary: From reads to count matrix

Normalization + Transformation

Count matrix

| SRR1039508 SRR1039509 SRR1039512 | SRR1039513 | SRR1039516 | SRR1039517 | SRR1039520 SRR1039521 | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 679 | 448 | 873 | 408 | 1138 | 1047 | 770 | 572 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 467 | 515 | 621 | 365 | 587 | 799 | 417 | 508 |
| 260 | 211 | 263 | 164 | 245 | 331 | 233 | 229 |
| 60 | 55 | 40 | 35 | 78 | 63 | 76 | 60 |
| 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 |
| 3251 | 3679 | 6177 | 4252 | 6721 | 11027 | 5176 | 7995 |
| 1433 | 1062 | 1733 | 881 | 1424 | 1439 | 1359 | 1109 |
| 519 | 380 | 595 | 493 | 820 | 714 | 696 | 704 |
| 394 | 236 | 464 | 175 | 658 | 584 | 360 | 269 |
| 172 | 168 | 264 | 118 | 241 | 210 | 155 | 177 |
| 2112 | 1867 | 5137 | 2657 | 2735 | 2751 | 2467 | 2905 |
| 524 | 488 | 638 | 357 | 676 | 806 | 493 | 475 |
| 71 | 51 | 211 | 156 | 23 | 38 | 134 | 172 |
| 555 | 394 | 905 | 415 | 727 | 697 | 618 | 599 |
| 10 | 2 | 9 | 2 | 10 | 6 | 5 | 5 |
| 1660 | 1251 | 2259 | 1079 | 2462 | 2514 | 1888 | 1660 |
| 59 | 54 | 66 | 23 | 84 | 87 | 31 | 59 |
| 729 | 692 | 943 | 475 | 1034 | 1163 | 731 | 744 |
| 201 | 161 | 256 | 99 | 268 | 257 | 160 | 137 |
| 3 | 0 | 3 | 1 | 4 | 0 | 0 | 1 |

Estimation of gene expression

You are analyzing 2 genes (gene A and B) in two conditions (condition 1 and 2) on the bases of an RNA-seq experiment that resulted in the following number of reads:

	Condition 1	Condition 2
Gene A	1000	3000
Gene B	2000	4000

Are the following statements correct?
(a) Both genes A and B are more expressed in condition 2.
(b) Gene B is more expressed than gene A.

Estimation of gene expression

We cannot state any such thing since we do not know
(a) sequencing depth (library size),
expression of all other genes within the sample
\rightarrow RNA-seq data informs about the relative abundance BUT NOT about the absolute abundance.
(b) gene length,
the longer the gene, more reads will be mapped

Estimation of gene expression

We cannot state any such thing since we do not know
(a) sequencing depth (library size),
expression of all other genes within the sample
\rightarrow RNA-seq data informs about the relative abundance BUT NOT about the absolute abundance.
(b) gene length, the longer the gene, more reads will be mapped

Solution: Control (Normalize) for
(1) sequencing depth
(2) compositional bias

Normalization

$R=$ Reads count for the gene
$G=$ Gene length in kilobases
$T=$ Total number of mapped reads in a sample

Reads/Fragments Per Kilobase

 transcript per Million mapped reads (RPKM/FPKM):$R P K M / F P K M=\frac{\left(\frac{R}{T / 10^{6}}\right)}{G}$
RPKM is used for single end reads FPKM is used for paired end reads.

Counts Per Million (CPM):

$C P M=\frac{R * 10^{6}}{T}$

- Sum of all CPMs is constant (1 million).
- Does not consider gene lengths.
- First metric used in the old times (e.g. cufflinks).

Simple normalization could fail

Genes	Control	Treated
Gene A	10	30
Gene B	30	90
Gene C	5	15
Gene D	1	3
Gene N	1000	240
Total	1046	378

DESeq2's median of ratios (sample-wise "size factor ")

Assumption: most genes are not differential expressed

1. For each gene, calculate geometric mean

Genes	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Geomean
Gene 1	34	56	23	12	10	30	23
Gene 2	10	6	7	11	12	8	9
Gene n	65	78	67	34	56	23	50

2. For each gene, calculate ratio to geometric mean

Genes	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Gene 1	1.5	2.4	1.0	0.5	0.4	1.3
Gene 2	1.1	0.7	0.8	1.3	1.4	0.9
Gene n	1.3	1.6	1.4	0.7	1.1	0.5

3. Take median of these ratios as sample normalization factor ("size factor")
1.3
1.6
1
0.7
1.1
0.9

Summary: Normalization

- Use raw counts when using DGE packages, e.g., DESeq2 and edgeR, as normalization is done internally
- RPKM/FPKM/CPM are not recommended for DGE analysis
- CPM is usable for visual data exploration (heatmap, abundance comparison, PCA)

- Median of Ratios (DESeq2) and Trimmed Mean of M-values TMM (edgeR) perform the best for DGE analysis
- other solutions: spike-ins/house-keeping genes

Transformation of sequencing-depth-normalized read counts

$\log _{2}$ transformation:

Transformation incl variance shrinkage:

For clustering, heatmaps etc use VST (DESeq2), VOOM (limma) or RLOG (DESeq2) Challenge your data by different normalization methods \rightarrow robustness of DGE analysis

Alternative: Compositional data analysis

DESeq's median of ratios and edgeR's TMM are less suitable in highly asymmetrical or sparse datasets \rightarrow unacceptably high false positive DEGs

- ratio transformations capture the relationships between the features in the dataset
- centered log-ratio (clr) transformation:

$$
\begin{aligned}
& x_{c l r}=\left[\log \left(x_{1} / G(x)\right), \log \left(x_{2} / G(x)\right) \ldots \log \left(x_{D} / G(x)\right)\right] \\
& G(x)=\sqrt[D]{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{D}}
\end{aligned}
$$

- clr-transformed values are scale-invariant (same ratio with few as well as many read counts)
- to calculate $G(x)$ we have to delete, replace or estimate the 0 count values
- estimate technical variation within each sample using Monte-Carlo instances drawn from the Dirichlet distribution \rightarrow probability vector prior to clr transformation

Unsupervised + Supervised data exploration

Explore global and local read count patterns

(1) unsupervised

no a priori information is needed
\rightarrow to detect technical noise and batch effects

- Dimensional reduction \rightarrow Principle Component Analysis (PCA)
- Clustering \rightarrow hierarchical, k-means

PCA and clustering should be done on normalized and transformed read counts so that high variability of low read counts does not occlude potentially informative data trends.
(2) supervised
usage of known biological labels
\rightarrow differential expression

Principle component analysis - PCA

Principle component analysis - PCA

- transforms measurements into new variables that are truly independent
- new variables of most variance are the principal components
- dimensionality reduction

Applications:

- visualization of your data in lower dimensions (2D, 3D)
- find patterns in numeric data
- identify batch effects or other possible covariates (e.g. male and female) by labeling them

PCA to detect batch effects

- PC1 separates the genotype (group of interest); however
- PC2 separates the batch effect (or other covariates)
- e.g. experiment date, sex, experimenter, different RNA isolation kit (you name it!)
- When batch effect is observed in PCA plots, add it as covariate to your GLM
- ~Batch + Genotype

Clustering

There are several clustering algorithms and more are being developed. Why?

Clustering

There are several clustering algorithms and more are being developed. Why?

- No clustering algorithm is perfect
- Remember! Always "see" your data and judge if the clusters make sense
- The performance of the clustering algorithm depends on the structure of your data

Ronan et al. "Avoiding common pitfalls when clustering biological data" Science Signalling 2016

Finding patterns in your data
Let's assume that you got these 4 genes differentially expressed in your dataset

Raw data

101.00	101.00	102.00	103.00	101.00	110.00	112.00	111.00	109.00	112.00	gene_1	100
10.10	10.20	10.20	10.10	10.10	11.10	11.00	10.90	10.90	11.20	gene_2	80
10.00	12.00	11.00	9.00	12.00	2.00	5.00	4.00	6.00	5.00	gene_3	
11.20	10.90	10.90	11.00	11.10	10.10	10.10	10.20	10.20	10.10	gene_4	
	8 O i N							$\begin{aligned} & \stackrel{\rightharpoonup}{\Phi} \\ & \stackrel{\sim}{3} \\ & \stackrel{\Phi}{\square} \end{aligned}$	$\begin{aligned} & \overrightarrow{\tilde{0}} \\ & \stackrel{W}{亏} \\ & \stackrel{0}{\omega} \end{aligned}$		40 20
					${ }_{\square}^{+}$	'N			${ }^{\circ}$		

Can you identify a pattern?

Finding patterns in your data

Perhaps this gives you a better hint

Z-score

$$
\begin{array}{ll}
z=\frac{x-\mu}{\sigma} & \mu=\text { mean } \\
\sigma=\text { standard deviation }
\end{array}
$$

Centering data

$$
x-\mu
$$

Centered

-5.20	-5.20	-4.20	-3.20	-5.20	3.80	5.80	4.80	2.80	5.80	gene_1
2.40	4.40	3.40	1.40	4.40	-5.60	-2.60	-3.60	-1.60	-2.60	gene_3
-0.48	-0.38	-0.38	-0.48	-0.48	0.52	0.42	0.32	0.32	0.62	gene_2
0.62	0.32	0.32	0.42	0.52	-0.48	-0.48	-0.38	-0.38	-0.48	gene_4
$\begin{gathered} 0 \\ \frac{0}{7} \\ \stackrel{\rightharpoonup}{\mathbf{0}} \\ \mathrm{I}^{2} \end{gathered}$	$\begin{gathered} \text { O} \\ \text { O} \\ \text { In } \\ \text { IN } \end{gathered}$			$\begin{gathered} \text { o} \\ \frac{0}{\overrightarrow{7}} \\ \text { İ } \end{gathered}$						

Scaling data

$$
\frac{x}{\sigma}
$$

Scaled

1.14	1.36	1.25	1.02	1.36	0.23	0.57	0.45	0.68	0.57	gene_3	
1.00	0.98	0.98	0.99	0.99	0.90	0.90	0.91	0.91	0.90	gene_4	
0.90	0.90	0.91	0.92	0.90	0.98	1.00	0.99	0.97	1.00	gene_1	
0.90	0.91	0.91	0.90	0.90	0.99	0.99	0.98	0.98	1.00	gene_2	
	$\begin{gathered} \text { ò } \\ \stackrel{\rightharpoonup}{\mathbf{0}} \\ \text { IN } \end{gathered}$	$\begin{aligned} & \text { O} \\ & \frac{0}{\overline{1}} \\ & \text { I } \\ & \text { In } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{7} \\ & \text { IO } \\ & \text { I' } \end{aligned}$							0.6 0.4

Z-score

$$
z=\frac{x-\mu}{\sigma}
$$

z-score (centered \& scaled)

-1.05	-1.05	-0.85	-0.64	-1.05	0.77	1.17	0.97	0.56	1.17	gene_1	1
-1.01	-0.80	-0.80	-1.01	-1.01	1.10	0.89	0.68	0.68	1.31	gene_2	0.5
0.66	1.21	0.94	0.39	1.21	-1.54	-0.72	-0.99	-0.44	-0.72	gene_3	0
31	0.68	0.68	0.89	1.10	-1.01	-1.01	-0.80	-0.80	-1.01	gene_4	
	$\begin{gathered} \text { o } \\ \frac{\vec{n}}{\mathbf{0}} \\ \text { N } \end{gathered}$		$\begin{gathered} \circ \\ \frac{0}{3} \\ \stackrel{\rightharpoonup}{\mathbf{O}} \\ \text { I- } \end{gathered}$				$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{0} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{D}} \\ & \stackrel{\sim}{3} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			-1
						N	ω	-	G		-1.5

Hierarchical clustering

- No need for pre-defining the number of c830007lusters
- Results dependent on
(1) distance metric: euclidean, manhattan, Pearson correlation etc.

2 clustering method: Ward, complete, average etc.

- Used with heatmaps, thus allows better visual inspection of data

Effect of transformations and distance metrics on clustering

- use normalized read counts (rlog, CPM etc.)
- transform your data for better scaling (log2, z-score transformation etc.)
A

B
Euclidean
Manhattan

Differentially expressed genes

Expression level of gene 1

Control:
Replicate 124
Replicate 225
Replicate 327

Treated:

Replicate 123
Replicate 26
Replicate 3102

Is this a differentially expressed gene?
You might get different answers depending of which software you run.

Differential gene expression

Common scientific question:

Quantification and statistical inference of systematic changes between conditions.
Principles are the same as for all other significance tests:
(1) Use the replicates (samples of the same conditions) to estimate the within-condition variability (variance) of the expression
(2) Use the expression and variance to test whether the difference between conditions is random or not

The test's statistical power increases with more biological (and technical) replicates!

Parametric vs. non-parametric methods

It would be nice to not have to assume anything about the expression value distributions but only use rank-order statistics.

However, it is hard to show statistical significance with non-parametric methods if only few replicates are available (less than 8).

Issues with DGE analysis for RNA-seq

Couldn't we just use a Student's t-test for each gene?
(1) Distribution is not normal. Which parametric distribution should I use?
(2) Variance across groups may not be homogeneous e.g. unequal group size
(3) The number of replicates is often too small to estimate the variance.
4. If we test each gene for DE, we have to account for multiple testing!

Which parametric distribution should I use?

Models for read counts originated from the idea that each read is sampled independently from a pool of reads and hence the number of reads for a given gene follows a ...

Binomial distribution

The binomial distribution works when we have a fixed number of trials n, each with a constant probability of success p.

The random variable X is the number of k successes:

$$
p(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Event: An RNA-seq read "lands" in a given gene (success) or not (failure)

As RNA-seq experiments produce large number of reads (n is large) the Gaussian distribution can replace the binomial.

Poisson distribution

RNA-seq experiments produce large number of reads (n is large) and probabilities of success are small (p is small) which can be modelled by the poisson distribution which is an approximation of the binomial.

Instead we know the average number of successes per intervall:

$$
\lambda=n p
$$

For $X \sim \operatorname{Poisson}(\lambda)$, both the mean and the variance are equal to λ.

Poisson versus negative binomial distribution

Many studies have shown that the variance grows faster than the mean in RNAseq data. This is known as overdispersion.

Negative binomial distribution

The negative binomial distribution works for discrete data over an unbounded positive range whose sample variance exceeds the sample mean.

The random variable X is the number of trials needed to make r successes (and k failures) if the probability of a single success is p :

Negative Binomial Distribution PDF

$$
N B(X=k)=\binom{k+r-1}{k} p^{r}(1-p)^{k}
$$

both the mean and variance can be calculated from r and p

Fitting a negative binomial GLM

Interpretation of the negative binomial GLM

Linear regression model (LM) is evaluated for every gene: $Y=b_{0}+b_{1} * x_{1}+e$

Y ... describes all read counts for a gene $b_{0} \ldots$ average of baseline group, e.g., control
$x_{1} . .$. design factor, e.g., condition (often 0 or 1) $b_{1} \ldots$ coefficent that captures the difference between different conditions e ... error or uncertainty
\rightarrow the closeness of b_{1} to zero will be evaluated during statistical testing steps
\rightarrow DESeq2 and edgeR use a generalized linear model (GLM)

Design \& contrast matrix

Design matrix (a.k.a. model matrix) has 2 main roles:
(1) defines the form of the model, or structure of the relationship between genes and explanatory variables
(2) is used to store values of the explanatory variable(s)

Contrast matrix is used for:
(1) identifying the differences (contrast) between explanatory variables e.g. group ${ }_{1}$ vs group $_{2}$

Basic regression models

Covariates: quantitative
measurements (e.g. age)

Regression model

expression $=\beta_{0}+\beta_{1}$ age

age

Factors: categorical variables (e.g. genotype)

Legend

- Original data points

Expected gene expression (based on model)

Expected gene expression (of non-reference levels in mean-reference model)

Design matrix with intercept

x is an indicator variable for sick mice:

- $\mathrm{x}=1$ for sick mice
- $\mathrm{x}=0$ otherwise

Design matrix without intercept

$x 1$ is an indicator variable for healthy mice:

- $x 1=1$ for healthy
- $\times 1=0$ otherwise
$x 2$ is an indicator variable for sick mice:
- $\mathrm{x} 2=1$ for sick
- $x 2=0$ otherwise

contrast $=c(-1,1)$

Design matrix with intercept

Model

$E(y)=1.03+1.09 \mathbf{x}_{1}+1.97 \mathbf{x}_{2}+3.87 \mathbf{x}_{3}$

$\mathrm{E}(\mathrm{y})=1.03$		$=1.03$
		(for control)
$\mathrm{E}(\mathrm{y})=1.03+1.09$		$=2.12$

Matrix

contrast $_{\text {treatment }}^{\text {III }}$ vs control $=c(0,0,0,1)$

Design matrix without intercept

Model

$E(y)=1.03 \mathbf{x}_{0}+2.12 \mathbf{x}_{1}+3.00 \mathbf{x}_{2}+4.90 \mathbf{x}_{3}$

$\mathrm{E}(\mathrm{y})=1.03$			$=1.03$
$\mathrm{E}(\mathrm{y})=$	2.12		(for control)
$\mathrm{E}(\mathrm{y})$	$=$		$=2.12$
(for treatment I)			
$\mathrm{E}(\mathrm{y})$	$=$	3.00	
			$=3.00$
(for treatment II)			

Matrix

contrast $_{\text {treatment III }}$ vs control $=c(-1,0,0,1)$

Design matrix for multiple covariates

group factor is converted from two factors representing tissue samples and cell types

Design matrix for cyclic time series

Model
$E(y)=2.10+0.53 \sin (\pi / 3 t)+-1.87 \cos (\pi / 3 t)$

Matrix
$>$ model.,matrix (-sinphase + cosphase)

	(Intercept)	time	time2
1	${ }_{1}$	0.87	0.5
2	1	0.87	0.5
3	1	0.87	-0.5
4	1	0.87	-0.5
5	1	1.2e-16	-1.0
6	1	1.2e-16	-1.0
7	1	-0.87	-0.5
8	1	-0.87	-0.5
9	1	-0.87	0.5
10	1	-0.87	0.5
11	1	-2.4e-16	1.0
12	1	-2.4e-16	1.8
13	1	0.87	0.5
14	1	0.87	0.5
15	1	0.87	-0.5
16	1	0.87	-0.5
17	1	3.7e-16	-1.0
18	1	3.7e-16	-1.0
19	1	-0.87	-0.5
20	(1	-0.87	-0.5

Design matrix for cyclic time series

Model
$E(y)=2.10+0.53 \sin (\pi / 3 t)+-1.87 \cos (\pi / 3 t)$

Model
$E(y)=2.09+0.25 t+0.45 \sin (\pi / 3 t)+-1.90 \cos (\pi / 3 t)$
Matrix

Dispersion estimate

- Not enough replicates to estimate dispersion for individual genes
- Borrow information from genes of similar expression strength among the replicates
- Genes with very high dispersion left as is

Implementation of DGE testing for RNA-seq

- Seq. depth normalization: DESeq2 uses sample-wise size factor, edgeR and Limma-Voom use TMM
- Assumed distribution: edgeR and DESeq model the count data using a negative binomial distribution and use their own modified statistical tests based on that. Limma-Voom uses log-normal distribution and t-test.
- Dispersion estimate: edgeR, DESeq2, Limma-Voom (in slightly different ways) "borrow" information across genes to get a better variance estimate.
- Statistical test to examine if the changes are statistically significant: DESeq2 provides the Wald test or the likelihood ratio test; edgeR uses quasi-likelihood (QL) F-test or likelihood ratio test
- Multiple testing issue: All current packages report false discovery rate FDR (most often Benjamini-Hochberg corrected p values).

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$
- If you run a test with $20(\mathrm{n})$ genes: $\beta_{\text {multiple }}=(1-\alpha)^{n}=0.95^{20}=0.36$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$
- If you run a test with $20(\mathrm{n})$ genes: $\beta_{\text {multiple }}=(1-\alpha)^{n}=0.95^{20}=0.36$
- Likewise, type-I error for multiple comparisons become:
$\alpha_{\text {multiple }}=1-(1-\alpha)^{n}=0.64$

Multiple testing issue

- Assume that you are comparing genes between condition A and B
- You would expect 1 in $20(5 / 100)$ genes to be significant with $p<0.05$ level assuming independence of tests
- Probability of observing a type-I error (false positive) in a single test: $\alpha_{\text {single }}=0.05$
- Probability of not observing a type-I error (false positive) in a single test: $\beta_{\text {single }}=1-\alpha=0.95$
- If you run a test with $20(\mathrm{n})$ genes: $\beta_{\text {multiple }}=(1-\alpha)^{n}=0.95^{20}=0.36$
- Likewise, type-I error for multiple comparisons become:

$$
\alpha_{\text {multiple }}=1-(1-\alpha)^{n}=0.64
$$

- If the number of tests (m) increases, the type-l error rate $\alpha_{\text {multiple }}$ will reach to 1
- This inflation of α has to be handled by multiple testing correction for p-values
- Most applied method for omics studies is Benjamini-Hochberg method (a.k.a. False Discovery Rate, FDR)

Visualization of DE analysis

An overview of statistical tests for DGE analysis

- Classical tests (t-test, Wilcoxon) still perform well
- However, they cannot handle complex designs
- Advanced methods (e.g. DESeq2, edgeR, limma) can handle complex experimental designs
- Choose your method carefully based on your needs
- If you don't know what to do, advanced methods are still the way to go

Very large sample sizes

- population-level RNA-seq studies
- single cell RNA-seq

- \# of identified DEGs from the original data

\rightarrow Non-parametric approaches, e.g., Wilcoxon rank-sum test, perform best.
Li et al. Exaggerated false positives by popular differential expression methods when analyzing human population samples. Genome Biol (2022)

Alternative: Compositional data analysis

ALDex for differential expression analysis:
(1) Add a small prior count to the observed counts for taxa j across all samples
(2) Draw Monte Carlo samples using the Dirichlet distribution
(3) Transform the samples using the Centered log ratio (CLR) transform

4 Hypothesis testing, e.g., Welch's t-test or Wilcoxon rank test
(5) Report expected values from statistical tests and effect-size estimate

Effect

Summary

- Always challenge your data, think of plausible technical explanation first
"I'm a scientist and I know what constitutes proof. But the reason I call myself by my childhood name is to remind myself that a scientist must also be absolutely like a child. If [they] see a thing, [they] must say that [they] see it, whether it was what [they] thought [they] were going to see or not. See first, think later, then test. But always see first. Otherwise you will only see what you were expecting. Most scientists forget that. "
- adapted from The Ultimate Hitchhiker's Guide to the Galaxy by Douglas Adams

PhD course "Bioinformatics analysis of gene expression data (BAGED)"
(1) Do you have your own bulk or single-cell RNA-seq data of a vertebrate?
(2) Do you want to learn how to analyze your data yourself?
(3) What? 2 to 3 weeks of lectures, tutorials and most importantly student projects
(4) Hardware and Software? UCloud, (Galaxy), R, Cytoscape
(5) When? BAGED-bulk January 2025; BAGED-single October 2024
(6) Sign up early due to limited number of seats

