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A statistician’s dream

Slide 2/17 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Why it would be great

• Constructing DAGs is time consuming and difficult
• Risk of confirmation bias when basing causal inference on

“expert-made” DAG: We can only find what we are looking for
• Different experts end up making different DAGs ⇒ current

standard approach is not ideal

Slide 3/17 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Correlation does not imply causation

Source: www.xkcd.com/552/
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. . . but causation may imply association
Reichenbach’s common cause principle: An association occurs
due to one of three possible mechanisms:
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DAGs and CPDAGs
Directed acyclic graphs and completed partially directed acyclic graphs

• DAG interpretation: Directed edge from X to Y means that X is a
direct cause of Y .

• Markov property: DAG structure (d-separations) ⇒ conditional
independencies in distribution.

• A CPDAG describes a Markov equivalence class, i.e., the set of all
DAGs that imply the same conditional independencies.

• CPDAG interpretation: Undirected edges denotes ambivalence
about edge orientation within equivalence class. Directed edges are
interpreted as for DAGs.

Slide 6/17 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Causal assumptions

No free lunch, need to make some untestable assumptions:

1 Faithfulness: Conditional independencies in distribution ⇒
DAG structure (d-separations)
(reverse implication of Markov property)

2 Acyclic data generating mechanisms: No feedback loops

3 No conditioning on unobserved colliders

4 No unobserved confounding

- relaxed later today!
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A statistician’s dream version 2.0

Goal: Estimate CPDAG by analyzing data (i.e., causal discovery).

Overall idea: Causal relationships leave behind traces in data (conditional
independencies) that can be used to reconstruct parts of the causal model
(its Markov equivalence class).

Focus of today: Causal discovery algorithms making use of conditional
independence testing (constraint-based).
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Ingredients for a causal discovery algorithm
Recall:
• d-separation: Two variables X and Y are d-separated by at set

of variables Z = {Z1, ..., Zk} if the following two conditions
hold:

1 All causal paths (X → ...→ Zi → ...→ T or confounder paths
(X ← ...← Zi → ...→ Y ) between X and Y include a variable
Zi from Z.

2 No collider paths (X → ...→ Zi ← ...← Y ) between X and Y
include a variable Zi from Z, nor a descendant of any variable
in Z.

• Assuming the Markov property and faithfulnes, we get that X
and Y are d-separated by Z exactly when X and Y are
conditionally independent given Z .

• Note: We can test conditional independence using empirical
data!
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The PC algorithm (Spirtes & Glymour 1991)

Peter-Clark (PC) algorithm summary
Input: Information about conditional independenciesa

1 Start with fully connected undirected graph
2 Repeat: For each pair of variables (A, B), look for separating

sets S among variables adjancent to A or B s.t. A ⊥⊥ B | S. If
such an S exists: Remove edge between A and B.

3 Apply orientation rules making use of v-structures and
acyclicity assumption

Output: CPDAG
aIn practice we use statistical tests to determine conditional independence.
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PC orientation rules

First, apply v-structure orientation: For each structure
A− B − C , A��−C : orient as A→ B ← C if B /∈ S for all S such
that A ⊥⊥ C | S.

A

B

C
⇒

A

B

C

Next, recursively apply three additional rules (next slide) until no
further changes are made.

These rules are sound and complete (in the large sample limit):
No incorrect orientations occur, and no further orientations can be
made (Meek 1995).
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Meek’s orientation rules
R1: Avoid introducing new v-structures (directly):

A

B

C
⇒

A

B

C

R2: Avoid introducing cycles.

A

B

C
⇒

A

B

C

R3: Avoid introducing new v-structures (indirectly).

A

B

C

D
⇒

A

B

C

D
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PC algorithm example
True graph:

Cond. indep.: X1 ⊥⊥ Y 2, X2 ⊥⊥ Y 2, X1 ⊥⊥ Y 3|X2.
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PC algorithm example
Start with fully connected graph

Cond. indep.: X1 ⊥⊥ Y 2, X2 ⊥⊥ Y 2, X1 ⊥⊥ Y 3|X2.
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PC algorithm example
For each pair of adjacent variables, look for separating sets of size 0

Cond. indep.: X1 ⊥⊥ Y 2, X2 ⊥⊥ Y 2, X1 ⊥⊥ Y 3|X2.
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PC algorithm example
For each pair of adjacent variables, look for separating sets of size 1

Cond. indep.: X1 ⊥⊥ Y 2, X2 ⊥⊥ Y 2, X1 ⊥⊥ Y 3|X2.

Slide 13/17 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

PC algorithm example
For each pair of adjacent variables, look for separating sets of size 1

Cond. indep.: X1 ⊥⊥ Y 2, X2 ⊥⊥ Y 2, X1 ⊥⊥ Y 3|X2.
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PC algorithm example

Orient v-structures

Cond. indep.: X1 ⊥⊥ Y 2, X2 ⊥⊥ Y 2, X1 ⊥⊥ Y 3|X2.
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PC algorithm example
Orient v-structures - Y 3 /∈ S for any S s.t. X2 ⊥⊥ Y 2|S.

Cond. indep.: X1 ⊥⊥ Y 2, X2 ⊥⊥ Y 2, X1 ⊥⊥ Y 3|X2.
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Choices to be made

Using PC on empirical data requires one to choose:

1 A conditional independence test.

2 A significance level to use in the tests.

Note:

• There does not exist a generally correct tests of conditional
independence which does not rely on some distributional
assumptions (Shah & Petersen 2020).

• We do not have a principled approach for choosing the test
level.
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Conditional independence testing
We do have some simple examples where correct tests1 do exist:

If the data are jointly normally distributed, we have:
X ⊥⊥ Y |Z ⇔ cor(X , Y |Z ) = 0

Note that cor(X , Y |Z ) = 0 is equivalent with testing H0 : β = 0 in
the linear regression model

Yi = α + β · Xi + γ · Zi + ϵi

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a χ2 test of independence
on the multiway cross tabulation over X , Y , Z .

Today, we will (pragmatically) test a necessary condition for
conditional independence for mix of binary/numeric variables: Test
for non-association using GLMs with spline-expansions (Petersen,
Osler & Ekstrøm 2021).

1Up to statistical uncertainty...
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Test level

• The significance level used for individual tests in the PC
algorithm is not a proper significance level for the globally
estimated graph
• It does not describe the overall risk of type I error
• Many tests are conducted, and the result of one test informs

what test should be conducted next ⇒ a complicated multiple
testing issue without obvious solutions

• Today, we will pragmatically consider an arbitrary choice of
α = 0.05 (exercises regarding varying this).
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