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A statistician’'s dream
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Why it would be great

® Constructing DAGs is time consuming and difficult

® Risk of confirmation bias when basing causal inference on
“expert-made” DAG: We can only find what we are looking for

e Different experts end up making different DAGs = current
standard approach is not ideal
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Correlation does not imply causation
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Source: www.xkcd.com/552/
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but causation may imply association

Reichenbach’s common cause principle: An association occurs
due to one of three possible mechanisms:

Attending Understanding

statistics  —— causality
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DAGs and CPDAGs

Directed acyclic graphs and completed partially directed acyclic graphs

Xy Xy — X5 X Xy —— X;

Xg X4 XG X2 X4 XG

® DAG interpretation: Directed edge from X to Y means that X is a
direct cause of Y.

® Markov property: DAG structure (d-separations) = conditional
independencies in distribution.

® A CPDAG describes a Markov equivalence class, i.e., the set of all
DAGs that imply the same conditional independencies.

® CPDAG interpretation: Undirected edges denotes ambivalence
about edge orientation within equivalence class. Directed edges are
interpreted as for DAGs.
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Causal assumptions

No free lunch, need to make some untestable assumptions:

@ Faithfulness: Conditional independencies in distribution =
DAG structure (d-separations)
(reverse implication of Markov property)

® Acyclic data generating mechanisms: No feedback loops
©® No conditioning on unobserved colliders

O No unobserved confounding

Slide 7/17 — CPDAGs and the PC algorithm



UNIVERSITY OF COPENHAGEN SECTION OF BIOSTATISTICS

Causal assumptions
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Causal assumptions

No free lunch, need to make some untestable assumptions:

@ Faithfulness: Conditional independencies in distribution =
DAG structure (d-separations)
(reverse implication of Markov property)

® Acyclic data generating mechanisms: No feedback loops
©® No conditioning on unobserved colliders

O No unobserved confounding - relaxed later today!
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A statistician’s dream version 2.0
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Goal: Estimate CPDAG by analyzing data (i.e., causal discovery).

Overall idea: Causal relationships leave behind traces in data (conditional
independencies) that can be used to reconstruct parts of the causal model
(its Markov equivalence class).

Focus of today: Causal discovery algorithms making use of conditional
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Ingredients for a causal discovery algorithm
Recall:

® d-separation: Two variables X and Y are d-separated by at set

of variables Z = {Zj, ..., Zx} if the following two conditions
hold:

@ All causal paths (X — ... = Z; — ... = T or confounder paths

(X4 ...+ Z — ...— Y) between X and Y include a variable
Z; from Z.

@ No collider paths (X — ... = Z; + ... + Y') between X and Y

include a variable Z; from Z, nor a descendant of any variable
in Z.

® Assuming the Markov property and faithfulnes, we get that X
and Y are d-separated by Z exactly when X and Y are
conditionally independent given Z.

® Note: We can test conditional independence using empirical
data! )
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The PC algorithm (Spirtes & Glymour 1991)

Peter-Clark (PC) algorithm summary
Input: Information about conditional independencies?

@ Start with fully connected undirected graph
® Repeat: For each pair of variables (A, B), look for separating
sets S among variables adjancent to Aor Bst. A1l B|S. If
such an S exists: Remove edge between A and B.
©® Apply orientation rules making use of v-structures and
acyclicity assumption
Output: CPDAG

“In practice we use statistical tests to determine conditional independence.
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PC orientation rules

First, apply v-structure orientation: For each structure
A—B—C,AA4C: orientas A— B+ Cif B¢ S for all S such
that A 1L C|S.

C

/

Next, recursively apply three additional rules (next slide) until no
further changes are made.

C

A
| / =
B

W— >

These rules are sound and complete (in the large sample limit):
No incorrect orientations occur, and no further orientations can be
made (Meek 1995).
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Meek's orientation rules

R1: Avoid introducing new v-structures (directly):
A C A C
| = |
B B

R2: Avoid introducing cycles.
—— C A—C
B
R3: Avoid introducing new v-structures (indirectly).

A—C
e

W — >

A

O —0

|
B
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PC algorithm example

True graph:

X2

e

X1 Y3

Y2

Cond. indep.: X1 1L Y2, X2 1L Y2, X1 1L Y3|X2. @

Slide 13/17 — CPDAGs and the PC algorithm



UNIVERSITY OF COPENHAGEN SECTION OF BIOSTATISTICS

PC algorithm example

Start with fully connected graph

7

X1 Y3

X2

Y2

Cond. indep.: X1 1l Y2, X2 1l Y2, X1 1 Y3|X2.
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PC algorithm example

For each pair of adjacent variables, look for separating sets of size 0

7

X1 Y3

X2

Y2

Cond. indep.: X1 1l Y2, X2 1l Y2, X1 1 Y3|X2.
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PC algorithm example
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PC algorithm example

For each pair of adjacent variables, look for separating sets of size 0
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Cond. indep.: X1 1l Y2, X2 1l Y2, X1 1 Y3|X2.
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PC algorithm example

For each pair of adjacent variables, look for separating sets of size 1

7

X1 Y3

X2

Y2

Cond. indep.: X1 11 Y2, X2 1l Y2, X1 1l Y3|X2.
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PC algorithm example

For each pair of adjacent variables, look for separating sets of size 1

7

X1 Y3

X2

Y2

Cond. indep.: X1 1l Y2, X2 1l Y2, X1 1 Y3|X2.
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PC algorithm example

Orient v-structures

7

X1 Y3

X2

Y2

Cond. indep.: X1 1L Y2, X2 1l Y2, X1 1L Y3|X2. @
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PC algorithm example

Orient v-structures - Y3 ¢ S for any S s.t. X2 1L Y2|S.

X2

7

X1 Y3

Y2

Cond. indep.: X1 1L Y2, X2 1L Y2, X1 1L Y3|X2. @
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Choices to be made

Using PC on empirical data requires one to choose:
@ A conditional independence test.

@® A significance level to use in the tests.
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Choices to be made

Using PC on empirical data requires one to choose:
@ A conditional independence test.

@® A significance level to use in the tests.

Note:

® There does not exist a generally correct tests of conditional
independence which does not rely on some distributional
assumptions (Shah & Petersen 2020).

® We do not have a principled approach for choosing the test
level.
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Conditional independence testing
We do have some simple examples where correct tests® do exist:

1Up to statistical uncertainty... [
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Conditional independence testing
We do have some simple examples where correct tests® do exist:

If the data are jointly normally distributed, we have:
XUY|Z&scor(X,Y|Z)=0

Note that cor(X, Y | Z) = 0 is equivalent with testing Hp : 5 =0 in
the linear regression model

Yi=a+8-Xi+v-Zi+e

1Up to statistical uncertainty...
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Conditional independence testing
We do have some simple examples where correct tests® do exist:
If the data are jointly normally distributed, we have:
XUY|Z&scor(X,Y|Z)=0
Note that cor(X, Y | Z) = 0 is equivalent with testing Hp : 5 =0 in
the linear regression model
Yi=a+8-Xi+v-Zi+e
If the data are exclusively categorical, we can directly test

conditional independence by use of e.g. a x? test of independence
on the multiway cross tabulation over X, Y, Z.

1Up to statistical uncertainty...
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Conditional independence testing
We do have some simple examples where correct tests® do exist:

If the data are jointly normally distributed, we have:
XUWULY|Zscor(X,Y]|Z)=0

Note that cor(X, Y |Z) = 0 is equivalent with testing Hp : 8 =0 in
the linear regression model

Yi=a+8-Xi+v-Zi+e

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a x? test of independence
on the multiway cross tabulation over X, Y, Z.

Today, we will (pragmatically) test a necessary condition for
conditional independence for mix of binary/numeric variables: Test
for non-association using GLMs with spline-expansions (Petersen,

1Up to statistical uncertainty...
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Test level

® The significance level used for individual tests in the PC
algorithm is not a proper significance level for the globally

estimated graph

® |t does not describe the overall risk of type | error

® Many tests are conducted, and the result of one test informs
what test should be conducted next = a complicated multiple
testing issue without obvious solutions
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Test level

® The significance level used for individual tests in the PC
algorithm is not a proper significance level for the globally
estimated graph

® |t does not describe the overall risk of type | error

® Many tests are conducted, and the result of one test informs
what test should be conducted next = a complicated multiple
testing issue without obvious solutions

® Today, we will pragmatically consider an arbitrary choice of
= 0.05 (exercises regarding varying this).
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