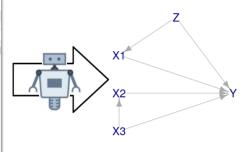
UNIVERSITY OF COPENHAGEN

Introduction to causal discovery: CPDAGs and the PC algorithm

Anne Helby Petersen

A statistician's dream

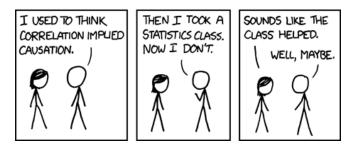
📵 P://o	ausalDisco	- master - l	RStudio So	u —		×
numl	Data ×					
$\langle \phi \phi \rangle$	1	Filter		Q,		
^	X1 $^{\circ}$	X2 $^{\diamond}$	хз ≎	z $^{\circ}$	Y 0	
1	3.391729	7.569873	6.029135	9.439524	13.454731	^
2	3.414703	14.188453	9.712695	9.769823	16.038376	
3	3.698171	9.334827	6.896619	11.558708	13.107802	
4	4.202275	10.043174	8.131201	10.070508	18.803295	
5	4.168309	6.660888	5.917512	10.129288	20.587377	
6	4.655413	12.207344	8.296038	11.715065	23.831699	
7	4.129180	14.153822	8.673465	10.460916	22.983059	
8	3.066846	10.600475	7.478397	8.734939	13.608160	
9	3.062538	11.641169	9.343594	9.313147	12.973388	
10	3.534678	13.879142	9.159190	9.554338	17.606833	
11	5.052163	15.668988	9.916494	11.224082	31.416680	
12	3.753359	11.015555	8.334251	10.359814	15.905559	~
Showing	1 to 12 of 1	,000 entries				



Why it would be great

- Constructing DAGs is time consuming and difficult
- Risk of confirmation bias when basing causal inference on "expert-made" DAG: We can only find what we are looking for
- Different experts end up making different DAGs ⇒ current standard approach is not ideal

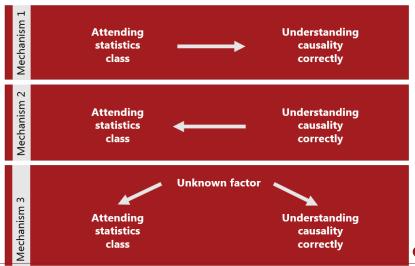
Correlation does **not** imply causation



Source: www.xkcd.com/552/

... but causation may imply association

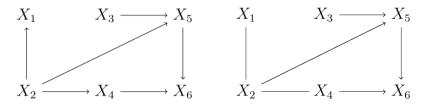
Reichenbach's common cause principle: An association occurs due to one of three possible mechanisms:



Slide 5/17 - CPDAGs and the PC algorithm

DAGs and CPDAGs

Directed acyclic graphs and completed partially directed acyclic graphs



- **DAG interpretation:** Directed edge from X to Y means that X is a direct cause of Y.
- Markov property: DAG structure (d-separations) ⇒ conditional independencies in distribution.
- A CPDAG describes a Markov **equivalence class**, i.e., the set of all DAGs that imply the same conditional independencies.
- CPDAG interpretation: Undirected edges denotes ambivalence about edge orientation within equivalence class. Directed edges are interpreted as for DAGs.

Causal assumptions

No free lunch, need to make some untestable assumptions:

- Faithfulness: Conditional independencies in distribution ⇒ DAG structure (d-separations) (reverse implication of Markov property)
- 2 Acyclic data generating mechanisms: No feedback loops
- 8 No conditioning on unobserved colliders
- 4 No unobserved confounding

Causal assumptions

No free lunch, need to make some untestable assumptions:

- Faithfulness: Conditional independencies in distribution ⇒ DAG structure (d-separations) (reverse implication of Markov property)
- 2 Acyclic data generating mechanisms: No feedback loops
- 8 No conditioning on unobserved colliders
- O No unobserved confounding

Causal assumptions

No free lunch, need to make some untestable assumptions:

- Faithfulness: Conditional independencies in distribution ⇒ DAG structure (d-separations) (reverse implication of Markov property)
- 2 Acyclic data generating mechanisms: No feedback loops
- 8 No conditioning on unobserved colliders
- O No unobserved confounding relaxed later today!

A statistician's dream version 2.0

📵 P://o	causalDisco	o - master -	RStudio So	u —		×
num	Data ×					
	1 1 1	Filter		Q,		
^	X1 [‡]	X2 $^{\circ}$	X3 [‡]	z $^{\circ}$	γ 0	
1	3.391729	7.569873	6.029135	9.439524	13.454731	^
2	3.414703	14.188453	9.712695	9.769823	16.038376	
3	3.698171	9.334827	6.896619	11.558708	13.107802	
4	4.202275	10.043174	8.131201	10.070508	18.803295	
5	4.168309	6.660888	5.917512	10.129288	20.587377	
6	4.655413	12.207344	8.296038	11.715065	23.831699	
7	4.129180	14.153822	8.673465	10.460916	22.983059	
8	3.066846	10.600475	7.478397	8.734939	13.608160	
9	3.062538	11.641169	9.343594	9.313147	12.973388	
10	3.534678	13.879142	9.159190	9.554338	17.606833	
11	5.052163	15.668988	9.916494	11.224082	31.416680	
12	3.753359	11.015555	8.334251	10.359814	15.905559	
Showing	1 to 12 of	1,000 entries				

Goal: Estimate CPDAG by analyzing data (i.e., causal discovery).

Overall idea: Causal relationships leave behind traces in data (conditional independencies) that can be used to reconstruct parts of the causal model (its Markov equivalence class).

Focus of today: Causal discovery algorithms making use of conditional independence testing (constraint-based).

Ingredients for a causal discovery algorithm

Recall:

- d-separation: Two variables X and Y are d-separated by at set of variables $\mathbf{Z} = \{Z_1, ..., Z_k\}$ if the following two conditions hold:
 - All causal paths $(X \to ... \to Z_i \to ... \to T$ or confounder paths $(X \leftarrow ... \leftarrow Z_i \to ... \to Y)$ between X and Y include a variable Z_i from **Z**.
 - ② No collider paths (X → ... → Z_i ← ... ← Y) between X and Y include a variable Z_i from Z, nor a descendant of any variable in Z.
- Assuming the Markov property and faithfulnes, we get that X and Y are d-separated by Z exactly when X and Y are conditionally independent given Z.
- Note: We can test conditional independence using empirical data!

The PC algorithm (Spirtes & Glymour 1991)

Peter-Clark (PC) algorithm summary

Input: Information about conditional independencies^a

- 1 Start with fully connected undirected graph
- ② Repeat: For each pair of variables (A, B), look for separating sets S among variables adjancent to A or B s.t. A ⊥⊥ B | S. If such an S exists: Remove edge between A and B.
- Apply orientation rules making use of v-structures and acyclicity assumption

Output: CPDAG

^aIn practice we use statistical tests to determine conditional independence.

PC orientation rules

First, apply **v-structure orientation**: For each structure A - B - C, $A \neq C$: orient as $A \rightarrow B \leftarrow C$ if $B \notin S$ for all **S** such that $A \perp L C \mid S$.

Next, recursively apply **three additional rules** (next slide) until no further changes are made.

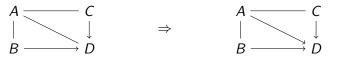
These rules are **sound and complete** (in the large sample limit): No incorrect orientations occur, and no further orientations can be made (Meek 1995).

Meek's orientation rules

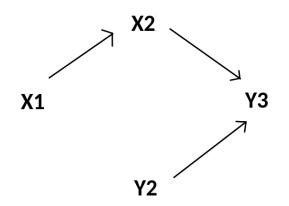
R1: Avoid introducing new v-structures (directly):

R2: Avoid introducing cycles.

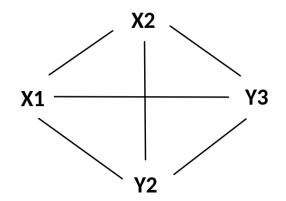
R3: Avoid introducing new v-structures (indirectly).



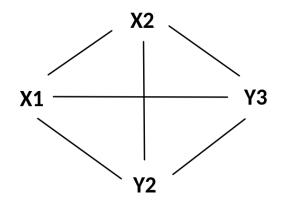
True graph:



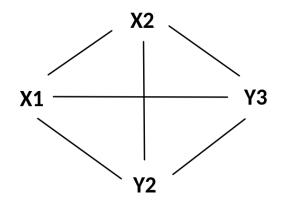
Start with fully connected graph



For each pair of adjacent variables, look for separating sets of size 0

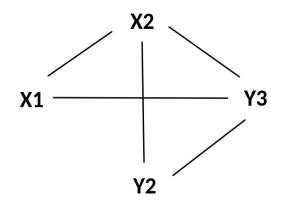


For each pair of adjacent variables, look for separating sets of size 0

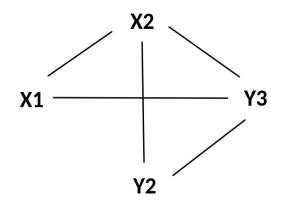


Cond. indep.: $X1 \perp Y2$, $X2 \perp Y2$, $X1 \perp Y3|X2$.

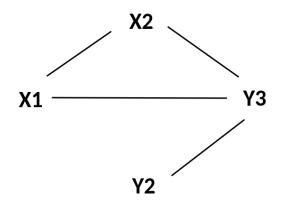
For each pair of adjacent variables, look for separating sets of size 0



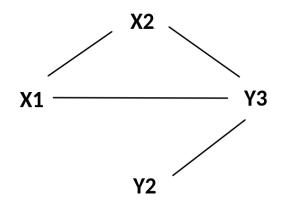
For each pair of adjacent variables, look for separating sets of size 0



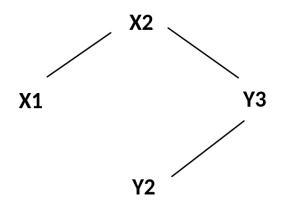
For each pair of adjacent variables, look for separating sets of size 0



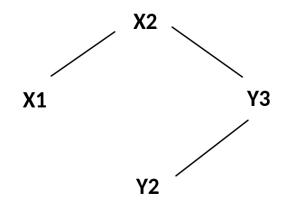
For each pair of adjacent variables, look for separating sets of size 1



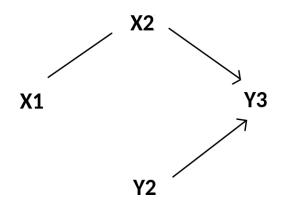
For each pair of adjacent variables, look for separating sets of size 1



Orient v-structures



Orient v-structures - $Y3 \notin S$ for any S s.t. $X2 \perp \perp Y2|S$.



Choices to be made

Using PC on empirical data requires one to choose:

- 1 A conditional independence test.
- **2** A significance level to use in the tests.

Choices to be made

Using PC on empirical data requires one to choose:

- **1** A conditional independence test.
- A significance level to use in the tests.

Note:

- There does not exist a generally correct tests of conditional independence which does not rely on some distributional assumptions (Shah & Petersen 2020).
- We do not have a principled approach for choosing the test level.

We do have some simple examples where correct tests¹ do exist:

¹Up to statistical uncertainty...

We do have some simple examples where correct tests¹ do exist:

If the data are jointly normally distributed, we have:

$$X \perp\!\!\!\perp Y \,|\, Z \Leftrightarrow \operatorname{cor}(X, Y \,|\, Z) = 0$$

Note that cor(X, Y | Z) = 0 is equivalent with testing $H_0 : \beta = 0$ in the linear regression model

$$Y_i = \alpha + \beta \cdot X_i + \gamma \cdot Z_i + \epsilon_i$$

¹Up to statistical uncertainty...

We do have some simple examples where correct tests¹ do exist:

If the data are jointly normally distributed, we have:

$$X \perp\!\!\!\perp Y \,|\, Z \Leftrightarrow \operatorname{cor}(X, Y \,|\, Z) = 0$$

Note that cor(X, Y | Z) = 0 is equivalent with testing $H_0 : \beta = 0$ in the linear regression model

$$Y_i = \alpha + \beta \cdot X_i + \gamma \cdot Z_i + \epsilon_i$$

If the data are **exclusively categorical**, we can directly test conditional independence by use of e.g. a χ^2 test of independence on the multiway cross tabulation over X, Y, Z.

¹Up to statistical uncertainty...

We do have some simple examples where correct tests¹ do exist:

If the data are jointly normally distributed, we have:

$$X \perp\!\!\!\perp Y \,|\, Z \Leftrightarrow \operatorname{cor}(X, Y \,|\, Z) = 0$$

Note that cor(X, Y | Z) = 0 is equivalent with testing $H_0 : \beta = 0$ in the linear regression model

$$Y_i = \alpha + \beta \cdot X_i + \gamma \cdot Z_i + \epsilon_i$$

If the data are **exclusively categorical**, we can directly test conditional independence by use of e.g. a χ^2 test of independence on the multiway cross tabulation over X, Y, Z.

Today, we will (pragmatically) test a necessary condition for conditional independence for mix of binary/numeric variables: Test for non-association using **GLMs with spline-expansions** (Petersen, <u>Osler & Ekstrøm 2021).</u> ¹Up to statistical uncertainty...

Test level

- The significance level used for individual tests in the PC algorithm is *not* a proper significance level for the globally estimated graph
 - It does not describe the overall risk of type I error
 - Many tests are conducted, and the result of one test informs what test should be conducted next ⇒ a complicated multiple testing issue without obvious solutions

Test level

- The significance level used for individual tests in the PC algorithm is *not* a proper significance level for the globally estimated graph
 - It does not describe the overall risk of type I error
 - Many tests are conducted, and the result of one test informs what test should be conducted next \Rightarrow a complicated multiple testing issue without obvious solutions
- Today, we will pragmatically consider an arbitrary choice of $\alpha = 0.05$ (exercises regarding varying this).

References

Meek (1995). Causal inference and causal explanation with background knowledge. In *Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI'95.*

Petersen, Osler & Ekstrøm (2021). Data-driven model building for life-course epidemiology. *American Journal of Epidemiology*.

Shah & Peters (2020). The hardness of conditional independence testing and the generalised covariance measure. *The Annals of Statistics*.

Spirtes & Glymour (1991). An algorithm for fast recovery of sparse causal graphs. *Social science computer review*.

