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Practicalities

Every day from 8.15 to 15

This year's cock-up

R

Additional software extensions

Breaks/exercises as we go along

Lunch roughly at 11.

Please read before classes

Sister course: Advanced Statistical Topics A
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1. Bayesian Statistics (Monday)

2. Network analysis (Wednesday)

3. Neural networks and deep

learning (Tuesday)

4. Principal component analysis

(PCA) and partial least squares

(PLS) (Thursday)

web.stanford.edu/~hastie/CASI/

Course overview
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Scientific questions

Is there life on Mars?

Will it rain tomorrow?

What is the average height of females?

What is the effect of this treatment?
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What is a probability?

Long run interpretation: .
#pin down

#throws

5



Concepts from frequentist statistics

What is the average height of Danish adult females?

Parameter estimation

 values

Confidence intervals

Precise answer to the wrong question

p
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What is the average female height?

I don’t know what the mean female height is. However, I know that its

value is fixed (not a random one). Therefore, I cannot assign

probabilities to the mean being equal to a certain value, or being less

than/greater than some other value. The most I can do is collect data

from a sample of the population and estimate its mean as the value

which is most consistent with the data.
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Example: female height

Estimation - maximum likelihood:

Given the model and the observed data. Find the parameter(s) that

would make the likelihood largest.

Note: 

Sample of  individuals with  cm and  cm.

θ̂ = arg max
θ

L(θ; Y )

L(θ; Y ) ≈ P(Y ; θ)

N = 10 ȳ = 168.2 sd(y) = 8
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Typical analysis summary

If we assume that female height can be approximated by a normal

distribution then our best estimate for the population mean is identical

to the sample mean, .

We are 95% confident that the interval

includes the true population mean.

μ̂ = 168.2

[ȳ ± 1.96 × sd(y)/√N ] = [166.63; 169.77]cm

9



What is a p value?

Given a statistical model and an assumption about the world .

Let  be a statistic, that summarises the relevant parameter(s) of the

data. The p value is defined as

IF the null hypothesis is correct and IF the statistical model is correct

then what is the probability to observe a test statistic that is further away

from  than the observed test statistic.

H0

Tobs

P(|T | ≥ |Tobs||H0)

H0
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The p value

Recall the research hypothesis:

What is the average height of Danish adult females?

We are not really answering the research question.

We know the estimate result in the sample. But that will vary with each

sample ...

What we are doing: IF we know the full DGP what might the sample data

look like?
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Confidence intervals

A 95% confidence interval is exactly the range of values that - if they were

tested as a null hypothesis - would not be rejected.

A combination on sample variation.

Note: this statement is about CIs in general. We do not know anything

about our particular CI.

Another note: A CI provides the same evidence for/against the null

hypothesis for all values in the CI range.
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Bayesian analysisBayesian analysis

1313



Probability

A number between 0 and 1 which encompasses my (our?) statement

about uncertainty / certainty

1 is complete certainty something is the case

0 is complete certainty something is not the case

It is a subjective measure.

Can probabilities be subjective?

If the payoff is $1.00 I would be willing to bet $0.30 that it will rain
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The concepts of Bayesian statistics

What is the average height of Danish adult females?

Start with prior distribution of my certainty of the population value.

Sample data and update beliefs to obtain posterior distrib. of belief

Maximum a posteriori (MAP) estimation (or some others)

Credibility intervals

Bayes factors

Subjective answer to right question 15



What is the average female height?

I agree that the mean is a fixed but since it is unknown, I see no problem

in representing my uncertainty probabilistically. I will do so by defining

a probability distribution over the possible values of the mean and use

sample data to update this distribution.

Can probabilities be subjective?
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Priors

The prior distribution expresses my initial belief about a parameter.

Prior knowledge. Classical/hierarchical Bayes. Specify prior

knowledge.

Flat. Essentially a uniform or near-uniform distribution. Results in

the MLE estimator.

Empirical bayes. Use data to guess the prior.

The choice of prior will have an impact on the posterior distribution. This

impact will diminish with increasing sample size. 17



Bayes' formula

where the marginal likelihood, , in the denominator is the

probability of obtaining the data  but without assuming anything

about the actual value of .

P(θ|D) =

∝ P(D|θ)


Model / DGP

× P(θ)


Prior

P(D|θ) × P(θ)

P(D)

P(D)

D

θ
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Differences in approaches

In the Bayesian framework we make probability statements
about model

parameters.

In the frequentist framework, parameters are fixed non-random

quantities and the probability statements concern the data.

Note that credible intervals can be interpreted in the more

natural way that there is a probability of 0.95 that the interval

contains  rather than the frequentist conclusion that 95% of

such intervals contain .

μ

μ
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The binomial model

Assumptions

 independent trials

Two possible outcomes: succcess and failure

Same probability of success, , in every trial

Estimate:

N

θ

θ̂ =
# Relevant

# Possible
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Frequentist analysis

prop.test(27, 84, correct=FALSE)

    1-sample proportions test without continuity

    correction

data:  27 out of 84, null probability 0.5

X-squared = 10.714, df = 1, p-value = 0.001063

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

 0.2312612 0.4272144

sample estimates:

        p 

0.3214286
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Bayesian analysis

Naive (but correct) approximation.

1. Assume prior distribution

2. Draw  from the prior distribution.

3. Draw a sample outcome given .

4. If the sample outcome matches the actual outcome then save 

5. Repeat from 2 a large number of times.

P(θ|D) =
P(D|θ) × P(θ)

P(D)

θ

θ

θ
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Bayesian analysis
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Bayes factors (alternative testing hypotheses)

Bayes factor is defined as the relative likelihood of the data under two

different hypotheses. It is defined as:

Independent of sample size, and shows support for the two hypotheses.

Classical hypothesis testing gives the null hypothesis preferred status,

and only considers evidence against it.

BF = =
P(D|H1)

P(D|H2)

P(H1|D)

P(H2|D)

P(H2)

P(H1)
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Wordings

K Strength of evidence

1 to 3 Not worth more than a bare mention

3 to 20 Positive

20 to 150 Strong

> 150 Very strong

Note:  vs . Otherwise reverse.

Alternatives exist!

H1 H2
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Software

rstan. Check out the Stan website. The supreme workhorse

brms. Bayesian Regression Models using Stan

rstanarm. Bayesian Applied Regression Modeling via Stan
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Volume of cherry trees

data(trees)
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rstanarm

library("rstanarm")

f1 <- stan_glm(Volume ~ Height, data=trees,

               family = gaussian(), 

               chains = 4, cores = 2, 

               seed = 12, iter = 4000)

Default weak priors:  for intercept,  otherwise. Check

out prior, prior_intercept and prior_aux.

N(0, 10) N(0, 5)
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f1

stan_glm

 family:       gaussian [identity]

 formula:      Volume ~ Height

 observations: 31

 predictors:   2

------

            Median MAD_SD

(Intercept) -86.6   29.2 

Height        1.5    0.4 

Auxiliary parameter(s):

      Median MAD_SD

sigma 13.6    1.8  

------

  For help interpreting the printed output see ?print.stanreg

  For info on the priors used see ?prior_summary.stanreg
30



plot(f1)

50% and 90% Credibility intervals
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How does estimation work in practice?

In practice we should do as we did previously. However, it is inefficient

as we have seen.

Need to sample from (complex) posterior distribution:

Involves multidimensional integral. Sometimes easy. Generally use

alternative: sample from conditional posterior distributions.

P(α, β, σ2|y)

32



MCMC methods

Conditional posterior distributions

Markov chain Monte Carlo (MCMC) methods comprise a class of

algorithms for sampling from a probability distribution.

Sample from these independently. Consequence: sampling approach

generates dependent samples from the joint posterior distribution.

P(α|y, β, σ2), P(β|y, α, σ2), P(σ2|y, α, β),
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MCMC concepts

Chains. A positive integer specifying the number of Markov chains.

The default is 4.

Iterations. A positive integer specifying the number of iterations for

each chain (including warmup). The default is 2000.

Warm-up. A positive integer specifying the number of warmup

iterations per chain.

Thinning. A positive integer specifying the period for saving samples.

The default is 1.
34



Posterior distribution of parameters

posterior <- as.matrix(f1)

head(posterior)

          parameters

iterations (Intercept)    Height    sigma

      [1,]   -21.26092 0.7002313 18.88568

      [2,]   -71.00485 1.3821234 15.55591

      [3,]   -62.52229 1.2556886 14.31037

      [4,]   -97.14594 1.6386454 10.82033

      [5,]   -23.87646 0.7047129 12.58199

      [6,]  -102.69781 1.7756832 13.89995
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Plot distributions

library("bayesplot")

mcmc_areas(posterior, pars=c("Height"), prob = 0.8)
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Sample outcomes from posterior

postsamp <- posterior_predict(f1, draws = 500)

color_scheme_set("brightblue")

ppc_dens_overlay(trees$Volume, postsamp[1:50, ])
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Testing hypotheses about parameters

Define criteria for hypothesis.

Consider the posterior distribution.

# Probability that the height regression is

# larger than 2

posterior <- as.matrix(f1)

mean(posterior[,2]>1)

[1] 0.915375
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shinystan

launch_shinystan(f1)
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BRMS

library("brms")

f2 <- brm(Volume ~ Height + Girth, data=trees, refresh = 0)
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Model checking

f2

 Family: gaussian 

  Links: mu = identity; sigma = identity 

Formula: Volume ~ Height + Girth 

   Data: trees (Number of observations: 31) 

  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

         total post-warmup draws = 4000

Population-Level Effects: 

          Estimate Est.Error l-95% CI u-95% CI Rhat

Intercept   -58.01      9.24   -76.83   -40.71 1.00

Height        0.34      0.14     0.07     0.62 1.00

Girth         4.71      0.28     4.16     5.26 1.00

          Bulk_ESS Tail_ESS

Intercept     3645     2994 41



plot(f2, pars = c("Height", "Girth"))

Warning: Argument 'pars' is deprecated. Please use

'variable' instead.
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pairs(f2)
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Marginal effects

plot(conditional_effects(f2, effects = "Girth"))
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stan

data {

int<lower=1> N;

vector[N] y;

vector[N] x;

}

parameters {

real alpha;

real beta;

real<lower=0> sigma;      // Note lower limit

}

model {

  alpha ~ normal(0, 10);    // Prior 

  beta ~ normal(0, 10);     // distributions 

  sigma ~ cauchy(0, 2.5);   // defined here

  y ~ normal(alpha + beta * x, sigma);

} 45



Run model

library("rstan")

DF <- list(x=trees$Height, y=trees$Volume, N=nrow(trees))

lm1 <- stan_model("linreg.stan") # Compile the stan program

f1 <- sampling(lm1, iter = 300, data = DF, show_messages=FALSE) # Samp

SAMPLING FOR MODEL '3692bcd2cb7b25b92b6f645d4a5fcc85' NOW (CHAIN 1).

Chain 1: 

Chain 1: Gradient evaluation took 9e-06 seconds

Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0

Chain 1: Adjust your expectations accordingly!

Chain 1: 

Chain 1: 

Chain 1: Iteration:   1 / 300 [  0%]  (Warmup)

Chain 1: Iteration:  30 / 300 [ 10%]  (Warmup)

Chain 1: Iteration:  60 / 300 [ 20%]  (Warmup) 46



Empirical Bayes

A practical challenges is that it requires a statistician to hold some prior

belief of the parameter that they are trying to estimate.

What if we only have data and no prior information?

Empricial Bayes approximates hierarchical Bayes by using the data to

form our prior and then data to form posterior beliefs.

Fast, approximate inference for hierarchical models.
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Empirical Bayes

Approximate the marginal of  using the maximum likelihood estimate

(MLE).

Set parameters of prior distribution to obtain this estimate.

The point estimates for the prior (i.e. mean/MAP) will look like a

weighted average of the sample estimate and the prior estimate (likewise

for estimates of the variance).

(Other versions exist)

θ
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