
Introduction to neural networks
Machine learning & neural networks

Anne Helby Petersen

Logistic regression with single predictors

Top-scores for single predictors using logistic regression:

variable accuracy
1 CORTICOSTEROID 0.6952055
2 AST 0.6952055
3 ALP 0.6883562
4 ECOG_1 0.6712329
5 AGEGRP_75plus 0.6712329

⇒ We need to use more variables.

But that opens up a lot of choices. And we don’t want to think.

⇒ Automate it - use neural networks.

Logistic regression with single predictors

Top-scores for single predictors using logistic regression:

variable accuracy
1 CORTICOSTEROID 0.6952055
2 AST 0.6952055
3 ALP 0.6883562
4 ECOG_1 0.6712329
5 AGEGRP_75plus 0.6712329

⇒ We need to use more variables.

But that opens up a lot of choices. And we don’t want to think.

⇒ Automate it - use neural networks.

Logistic regression with single predictors

Top-scores for single predictors using logistic regression:

variable accuracy
1 CORTICOSTEROID 0.6952055
2 AST 0.6952055
3 ALP 0.6883562
4 ECOG_1 0.6712329
5 AGEGRP_75plus 0.6712329

⇒ We need to use more variables.

But that opens up a lot of choices. And we don’t want to think.

⇒ Automate it - use neural networks.

Logistic regression with single predictors

Top-scores for single predictors using logistic regression:

variable accuracy
1 CORTICOSTEROID 0.6952055
2 AST 0.6952055
3 ALP 0.6883562
4 ECOG_1 0.6712329
5 AGEGRP_75plus 0.6712329

⇒ We need to use more variables.

But that opens up a lot of choices. And we don’t want to think.

⇒ Automate it - use neural networks.

More automation, please

Logistic regression is helpful, but cumbersome. We would have to
manually perform feature engineering :

I choose what variables to use

I choose their functional forms (squared, log-transformation, ...)

I decide if interaction effects should be added

Goal now: More automation, less thinking.

More automation, please

Logistic regression is helpful, but cumbersome. We would have to
manually perform feature engineering :

I choose what variables to use

I choose their functional forms (squared, log-transformation, ...)

I decide if interaction effects should be added

Goal now: More automation, less thinking.

Teaching by examples

Logistic regression revisited

Recall that the logistic regression model on d pre-selected variables
x1, ..., xd computes label probabilities using the function:

flogit(x1, x2, ..., xd) = exp(α̂+ β̂1x1 + ...+ β̂dxd)
1 + exp(α̂+ β̂1x1 + ...+ β̂dxd)

= g(α̂+ β̂1x1 + ...+ β̂dxd)

where α̂, β̂1, ..., β̂d are learned from data and g(x) = exp(x)
1+exp(x)

Main ideas in neural networks:

1. Do this repeatedly to allow for more flexible modeling of the xs

2. Use other (and varying) functions g .

Logistic regression revisited

Recall that the logistic regression model on d pre-selected variables
x1, ..., xd computes label probabilities using the function:

flogit(x1, x2, ..., xd) = exp(α̂+ β̂1x1 + ...+ β̂dxd)
1 + exp(α̂+ β̂1x1 + ...+ β̂dxd)

= g(α̂+ β̂1x1 + ...+ β̂dxd)

where α̂, β̂1, ..., β̂d are learned from data and g(x) = exp(x)
1+exp(x)

Main ideas in neural networks:

1. Do this repeatedly to allow for more flexible modeling of the xs

2. Use other (and varying) functions g .

A simple neural network

Let’s look at a simple NN on the “board”. . .

Activation functions: g (1), g (2), ...

Rules of thumb:

I ‘relu‘ is often claimed to perform the best on hidden layers.

I ‘softmax‘ (not shown) is go to for output layer when the task is
classification. It gives weights that sum to 1 and which can
then be interpreted as probabilities.

Learning for NNs

I Estimation task: Find optimal values for the weights w (k)
lj

I Strategy: Minimize a loss function
I For regression, this could be e.g. the MSE (mean squared error)

loss
1

ntrain

ntrain∑
i=1

(Yi − Ŷi)2

I For binary classification, we use the binary cross entropy loss

− 1
ntrain

ntrain∑
i=1

Yi · log(f (xi |W)) + (1− Yi) · (log(1− f (xi |W)))

where f (xi |W) = f (xi1, ..., xip |W) and W are all the weights
used for f .

I Method: Stochastic gradient descent

Learning for NNs

I Estimation task: Find optimal values for the weights w (k)
lj

I Strategy: Minimize a loss function
I For regression, this could be e.g. the MSE (mean squared error)

loss
1

ntrain

ntrain∑
i=1

(Yi − Ŷi)2

I For binary classification, we use the binary cross entropy loss

− 1
ntrain

ntrain∑
i=1

Yi · log(f (xi |W)) + (1− Yi) · (log(1− f (xi |W)))

where f (xi |W) = f (xi1, ..., xip |W) and W are all the weights
used for f .

I Method: Stochastic gradient descent

Learning for NNs

I Estimation task: Find optimal values for the weights w (k)
lj

I Strategy: Minimize a loss function
I For regression, this could be e.g. the MSE (mean squared error)

loss
1

ntrain

ntrain∑
i=1

(Yi − Ŷi)2

I For binary classification, we use the binary cross entropy loss

− 1
ntrain

ntrain∑
i=1

Yi · log(f (xi |W)) + (1− Yi) · (log(1− f (xi |W)))

where f (xi |W) = f (xi1, ..., xip |W) and W are all the weights
used for f .

I Method: Stochastic gradient descent

Optimization algorithm

Algorithm outline:

1. Begin with random values for all the weights w (k)
lj .

2. In each epoch (round) do the following:
2.1 Split the training data into batches, each of size nbatch (possibly

equal to 1).

2.2 Starting with a random batch b, do the following sequentially
for each batch:

2.2.1 Compute the loss function for the observations in b

2.2.2 Change weights W slightly such that the loss becomes smaller
for the observations in b

3. Return f with the final weights found.

Optimization algorithm

Algorithm outline:

1. Begin with random values for all the weights w (k)
lj .

2. In each epoch (round) do the following:
2.1 Split the training data into batches, each of size nbatch (possibly

equal to 1).

2.2 Starting with a random batch b, do the following sequentially
for each batch:

2.2.1 Compute the loss function for the observations in b

2.2.2 Change weights W slightly such that the loss becomes smaller
for the observations in b

3. Return f with the final weights found.

Stochastic gradient descent

Q: How do we “change weights W slightly such that the loss
becomes smaller for the observations in b”?

A: Stochastic gradient descent.

I Take small "steps" in the direction that decreases the loss the
most (negative gradient)
I Compute gradients using backpropagation

I Let’s see how it works if we only had one weight...

I Note: The algorithm is only guaranteed to find a local
minimum

Stochastic gradient descent

Q: How do we “change weights W slightly such that the loss
becomes smaller for the observations in b”?

A: Stochastic gradient descent.
I Take small "steps" in the direction that decreases the loss the

most (negative gradient)

I Compute gradients using backpropagation

I Let’s see how it works if we only had one weight...

I Note: The algorithm is only guaranteed to find a local
minimum

Stochastic gradient descent

Q: How do we “change weights W slightly such that the loss
becomes smaller for the observations in b”?

A: Stochastic gradient descent.
I Take small "steps" in the direction that decreases the loss the

most (negative gradient)
I Compute gradients using backpropagation

I Let’s see how it works if we only had one weight...

I Note: The algorithm is only guaranteed to find a local
minimum

Stochastic gradient descent

Q: How do we “change weights W slightly such that the loss
becomes smaller for the observations in b”?

A: Stochastic gradient descent.
I Take small "steps" in the direction that decreases the loss the

most (negative gradient)
I Compute gradients using backpropagation

I Let’s see how it works if we only had one weight...

I Note: The algorithm is only guaranteed to find a local
minimum

Stochastic gradient descent

Q: How do we “change weights W slightly such that the loss
becomes smaller for the observations in b”?

A: Stochastic gradient descent.
I Take small "steps" in the direction that decreases the loss the

most (negative gradient)
I Compute gradients using backpropagation

I Let’s see how it works if we only had one weight...

I Note: The algorithm is only guaranteed to find a local
minimum

Stochastic gradient descent tuning

Tunable parameters:

I Epoch number: How many times do we go through all the
observations?

I Batch size: How many observations do we look at at a time
when updating weights?

I Step size (a.k.a. learning rate): How big steps do we take
when changing the weights?

I We will use the RMSprop variety of stochastic gradient descent
which makes this choice for us adaptively.

Stochastic gradient descent tuning

Tunable parameters:

I Epoch number: How many times do we go through all the
observations?

I Batch size: How many observations do we look at at a time
when updating weights?

I Step size (a.k.a. learning rate): How big steps do we take
when changing the weights?
I We will use the RMSprop variety of stochastic gradient descent

which makes this choice for us adaptively.

Prepping the data

We need to do two things before we get started:
1. Scale the data

I For each variable in both test and training data, subtract the
training data mean of that variable, divide by the training data
standard deviation of that variable.

I Variables in the scaled training data will then have mean 0,
standard deviation 1.

2. Convert input data to matrix, convert labels to "one hot deck
encoding" (two dummies).

All this is done for you if you run:
source("prepDataForNNs.R")

and now use NN_traindata_x, NN_traindata_DEATH2YRS,
NN_testdata_x, NN_testdata_DEATH2YRS, . . .

Prepping the data

We need to do two things before we get started:
1. Scale the data

I For each variable in both test and training data, subtract the
training data mean of that variable, divide by the training data
standard deviation of that variable.

I Variables in the scaled training data will then have mean 0,
standard deviation 1.

2. Convert input data to matrix, convert labels to "one hot deck
encoding" (two dummies).

All this is done for you if you run:
source("prepDataForNNs.R")

and now use NN_traindata_x, NN_traindata_DEATH2YRS,
NN_testdata_x, NN_testdata_DEATH2YRS, . . .

Let’s make a NN!

We will now fit a NN, Casper, in R with the structure:

L1: Input layer of 91 features

L2: Hidden layer with two nodes and sigmoid activation function

L3: Output layer with two nodes and softmax activation function

we will use

I 20 epochs

I batch size 10

Let’s do this in R. . .

Let’s make a NN!

We will now fit a NN, Casper, in R with the structure:

L1: Input layer of 91 features

L2: Hidden layer with two nodes and sigmoid activation function

L3: Output layer with two nodes and softmax activation function

we will use

I 20 epochs

I batch size 10

Let’s do this in R. . .

Time to try making NNs yourselves

Go to the course website and find exercise session 3:

