A slightly smarter machine: Using logistic regression Machine learning & neural networks

Anne Helby Petersen

Going beyond manual machines

Going beyond manual machines

Going beyond manual machines

A logistic regression model for Y = DEATH2YRS:

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_d X_d$$

and we can *learn* (estimate) the values of α , β_1 , ..., β_d from the training data by use of maximum likelihood estimation.

Logistic regression: fitting in R

We fit the model

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \alpha + \beta_1 \mathsf{AST}$$

as follows (AST: Aspartate aminotransferase, measure of liver damage):

coef(m1)

(Intercept) AST ## -1.3497249 0.0276447

and we see that $\hat{\alpha}=-1.35$ and $\hat{\beta}=0.03.$

Logistic regression: Making predictions for new patient with $\mathsf{AST}=14$

We can predict log odds of Y by inserting $\hat{\alpha}, \hat{\beta}, 14$ in the model:

$$\log\left(\frac{\hat{P}(Y=1 \,|\, \mathsf{AST}=14)}{1-\hat{P}(Y=1 \,|\, \mathsf{AST}=14)}\right) = \hat{\alpha} + \hat{\beta}_1 \cdot 14$$

Logistic regression: Making predictions for new patient with $\mathsf{AST}=14$

We can predict log odds of Y by inserting $\hat{\alpha}, \hat{\beta}, 14$ in the model:

$$\log\left(\frac{\hat{P}(Y=1 \mid \mathsf{AST}=14)}{1-\hat{P}(Y=1 \mid \mathsf{AST}=14)}\right) = \hat{\alpha} + \hat{\beta}_1 \cdot 14$$
$$= -1.35 + 0.03 \cdot 14$$

Logistic regression: Making predictions for new patient with $\mathsf{AST}=14$

We can predict log odds of Y by inserting $\hat{\alpha}, \hat{\beta}, 14$ in the model:

$$\log\left(\frac{\hat{P}(Y=1 | \mathsf{AST}=14)}{1-\hat{P}(Y=1 | \mathsf{AST}=14)}\right) = \hat{\alpha} + \hat{\beta}_1 \cdot 14$$

= -1.35 + 0.03 \cdot 14
= -0.96

These are the predicted *log odds* for the new patient.

Note that

$$\log\left(\frac{p}{1-p}\right) = k \qquad \Leftrightarrow \qquad p = \frac{\exp(k)}{1+\exp(k)}$$

Note that

$$\log\left(\frac{p}{1-p}\right) = k \qquad \Leftrightarrow \qquad p = \frac{\exp(k)}{1+\exp(k)}$$

so we find that

$$\hat{P}(Y = 1 | \text{AST} = 14) = \frac{\exp(-0.96)}{1 + \exp(-0.96)}$$

= 0.28

which is the *predicted probability* of the new patient dying within 2 years.

We can make a classifier by using a *decision rule*:

$$\hat{Y}_{\text{new}} = f(\text{AST}_{\text{new}}) = \begin{cases} 1 & \text{if } \hat{P}(Y = 1 \mid \text{AST} = \text{AST}_{\text{new}}) > 0.5 \\ 0 & \text{if } \hat{P}(Y = 1 \mid \text{AST} = \text{AST}_{\text{new}}) \le 0.5 \end{cases}$$

We can make a classifier by using a *decision rule*:

$$\hat{Y}_{\text{new}} = f(\text{AST}_{\text{new}}) = \begin{cases} 1 & \text{if } \hat{P}(Y = 1 \mid \text{AST} = \text{AST}_{\text{new}}) > 0.5 \\ 0 & \text{if } \hat{P}(Y = 1 \mid \text{AST} = \text{AST}_{\text{new}}) \le 0.5 \end{cases}$$

For AST_{new} = 14, where $\hat{P}(Y = 1 | \text{AST} = 14) = 0.28$, we thus guess at the label

$$\hat{Y}_{\mathsf{new}} = f(14) = 0$$

so we *don't* think the new patient with AST level 14 will die within 2 years.

head(round(preds,2), 10)

##	1	2	3	4	5	6	7	8	9	10
##	0.42	0.37	0.32	0.66	0.32	0.37	0.52	0.32	0.52	0.39

head(round(preds,2), 10)

1 2 3 4 5 6 7 8 9 10
0.42 0.37 0.32 0.66 0.32 0.37 0.52 0.32 0.52 0.39
labels <- rep(0, nrow(testdata_x))
labels[preds > 0.5] <- 1</pre>

head(round(preds,2), 10)

1 2 3 4 5 6 7 8 9 10
0.42 0.37 0.32 0.66 0.32 0.37 0.52 0.32 0.52 0.39
labels <- rep(0, nrow(testdata_x))
labels[preds > 0.5] <- 1</pre>

```
head(labels, 10)
```

```
## [1] 0 0 0 1 0 0 1 0 1 0
```

Evaluating the performance of the logistic regression machine

#Confusion matrix

table(labels, testdata_DEATH2YRS)

##	t	cesto	lata_	DEATH2YRS
##	labels	0	1	
##	0	191	84	
##	1	5	12	
44				

#Accuracy

mean(labels == testdata_DEATH2YRS)

[1] 0.6952055

Go to the course website and find exercise session 2:

Exercise session 2

Machine learning & neural networks

Anne Helby Petersen

May 9, 2019

Overview

The goal of this exercise session is to:

- · Use logistic regression to train a machine
- · Experiment more with different performance measures (accuracy, AUC, AUPRC)

2.1: A simple logistic regression machine: Pablo

Below, we define a machine that uses logistic regression in its training step, and we name him Pablo.

Pablo's wants to use a logistic regression model to predict labels for new observations and he will use the ECOG_1 and ECOG_2 variables as well as the HB and AST variables. That means that he will fit the following model on the training data:

 $\log \biggl(\frac{P(\text{DEATH2YRS}=1)}{1-P(\text{DEATH2YRS}=1)} \biggr) = \alpha + \beta_1 \cdot \text{ECOG}_1 + \beta_2 \text{ECOG}_2 + \beta_3 \text{HB} + \beta_4 \text{AST}$