
Sparse Version of PCA and PLS

B. Liquet

Introduction

Both PCA and PLS approaches enable to perform dimension
reduction by constructing H latent variables which are linear
combination of all variables:

Ck = u1
k × X1 + u2

k × X2 + . . . + up
k × Xp , k = 1, . . . ,H

PCA and PLS do not provide a direct variable selection method.

Sparse Version

I sparse model select the relevant predictors

I Some coefficients ul
k are equal to 0

Ck = u1
k × X1 + u2

k︸︷︷︸
=0

×X2 + u3
k︸︷︷︸

=0

×X3 + . . . + up
k × Xp

I Both sparse PCA and sparse PLS components are linear
combinations of the selected variables

→ use SVD and low rank approximation to include penalization on
the loading vector.

Intuition of sparse PCA and sparse PLS

Eckart-Young (1936) states that the (truncated) SVD of a given matrix
M (of rank r) provides the best reconstitution (in a least squares
sense) of M by a matrix with a lower rank k :

min
A of rank k

‖M − A‖2F =

∥∥∥∥∥∥∥M −
k∑
`=1

δ`u`vT
`

∥∥∥∥∥∥∥
2

F

=
r∑

`=k+1

δ2
` .

If the minimum is searched for matrices A of rank 1, which are under
the form ũṽT where ũ, ṽ are non-zero vectors, we obtain

min
ũ,̃v

∥∥∥M − ũṽT
∥∥∥2

F =
r∑
`=2

δ2
` =

∥∥∥M − δ1u1vT
1

∥∥∥2
F .

Intuition of sparse PCA and sparse PLS

Thus, solving

argmin
ũ,̃v

∥∥∥Mh−1 − ũṽT
∥∥∥2

F

and norming the resulting vectors gives us u1 and v1. This is
another approach to solve the PLS optimization problem.

Towards sparse PLS

I Shen and Huang (2008) connected the previous optimization problem
(in a PCA context) to least square minimisation in regression:

∥∥∥Mh−1 − ũṽT
∥∥∥2

F
=

∥∥∥∥∥∥∥∥∥∥vec(Mh−1)︸ ︷︷ ︸
y

− (Ip ⊗ ũ)̃v︸ ︷︷ ︸
Xβ

∥∥∥∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥∥vec(Mh−1)︸ ︷︷ ︸
y

− (v ⊗ Iq)̃u︸ ︷︷ ︸
Xβ

∥∥∥∥∥∥∥∥∥∥
2

2

.

↪→ Possible to use many existing variable selection techniques using
regularization penalties.

We propose iterative alternating algorithms to find normed vectors ũ/‖ũ‖
and ṽ/‖ṽ‖ that minimise the following penalised sum-of-squares criterion∥∥∥Mh−1 − ũṽT

∥∥∥2
F + Pλ (̃u, ṽ),

for various penalization terms Pλ (̃u, ṽ).

↪→We can obtain several sparse versions (in terms of the weights u and
v).

Example sparse PLS

Sparse PLS solves:

min
uh,vh
||Mh − uhvT

h ||
2
F + λh

1

P∑
i=1

2|ui | + λh
2

Q∑
i=1

2|vi |, h = 1 . . .H

Choice of the sparsity: λh
1 and λh

2

I k -fold cross validation or leave-one-out

↪→ RMSEP=Root Mean Squared Error Prediction

I For small samples (e.g n 6 100) estimated prediction error
might be biased

↪→ arbitrary choose the number of non-zero components in
each loading vector uh and vh .

the biologist will also help choosing these parameters!

Sparse PLS in action

library(mixOmics)
data(nutrimouse)
X <- nutrimouse$gene
Y <- nutrimouse$lipid
dim(X); dim(Y)

[1] 40 120

[1] 40 21

Sparse PLS in action

MyResult.spls <- spls(X,Y, keepX = c(25, 25), keepY = c(5,5))
plotIndiv(MyResult.spls)

plotVar(MyResult.spls)

If you were to run spls with this minimal code, you would be using the following
default values:

I ncomp = 2: the first two PLS components are calculated and are used for
graphical outputs;

I scale = TRUE: data are scaled (variance = 1, strongly advised here);
I mode = "regression": by default a PLS regression mode should be used

Customize sample plots

plotIndiv(MyResult.spls, group = nutrimouse$genotype,
rep.space = "XY-variate", legend = TRUE,
legend.title = 'Genotype',
ind.names = nutrimouse$diet,
title = 'Nutrimouse: sPLS')

linsun

sun

fish

ref

coc

lin

lin

fish
coc

fish

ref

sun

ref

sun

lin
coc

fish
coc

ref

coc

ref

sun

fish

sun

ref

ref lin

fish

lin
coc

coc

ref

sun
fish

coc

lin

fish

lin

sun

Nutrimouse: sPLS

−4 −2 0 2

−4

−2

0

2

4

6

XY−variate 1

X
Y

−
va

ria
te

 2 Genotype

ppar

wt

Customize sample plots

plotIndiv(MyResult.spls, group=nutrimouse$diet,
pch = nutrimouse$genotype,
rep.space = "XY-variate", legend = TRUE,
legend.title = 'Diet', legend.title.pch = 'Genotype',
ind.names = FALSE,
title = 'Nutrimouse: sPLS')

Nutrimouse: sPLS

−4 −2 0 2

−4

−2

0

2

4

6

XY−variate 1

X
Y

−
va

ria
te

 2

Diet

coc

fish

lin

ref

sun

Genotype

ppar

wt

Customize variable plots
plotVar(MyResult.spls, cex=c(3,2), legend = TRUE)

ACBP

ACC2

ACOTH

ALDH3

AOX

BIEN

BSEP

CACP

CAR1

CBS

CPT2CYP27a1

CYP3A11

CYP4A10
CYP4A14FAS

FAT

GK
GSTa

GSTpi2

HPNCL
L.FABP

Lpin2

MCAD

MDR2

MS

Ntcp

PDK4

PECI
PLTP

PMDCI

RXRa
RXRg1 SHP1

SIAT4c

SPI1.1

SR.BI

THIOLTpalphaTpbeta

UCP2

VDR

Waf1
apoC3

cHMGCoAS

cMOAT

eif2g

mHMGCoAS

C16.0

C18.0

C16.1n.9

C18.1n.9

C18.1n.7

C20.1n.9

C18.2n.6

C20.2n.6

C20.3n.6

C22.6n.3

Correlation Circle Plots

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2 Block

X

Y

coordinates <- plotVar(MyResult.spls, plot = FALSE)

Variable selection outputs

The selected variables can be extracted using the selectVar
function for further analysis.
MySelectedVariables <- selectVar(MyResult.spls, comp = 1)
MySelectedVariablesXname # Selected genes on component 1

[1] "SR.BI" "SPI1.1" "PMDCI" "CYP3A11" "Ntcp" "GSTpi2" "FAT"
[8] "apoC3" "UCP2" "CAR1" "Waf1" "ACOTH" "eif2g" "PDK4"
[15] "CYP4A10" "VDR" "SIAT4c" "RXRg1" "RXRa" "CBS" "SHP1"
[22] "MCAD" "MS" "CYP4A14" "ALDH3"

MySelectedVariablesYname # Selected lipids on component 1

[1] "C18.0" "C16.1n.9" "C18.1n.9" "C20.3n.6" "C22.6n.3"

Variable selection outputs

The loading plots help visualise the coefficients assigned to each
selected variable on each component:

plotLoadings(MyResult.spls, comp = 1, size.name = rel(0.5))

Tuning parameter and numerical outputs

I The number of variables to select on each component and on each
data set keepX and keepY have to be chosen.

-These tuning parameters can be quite difficult to tune. Here is a minimal
example where we only tune keepX based on the Mean Absolute Value.
Other measures proposed are Mean Square Error, Bias and R2 (see
?tune.spls):
list.keepX <- c(2:10, 15, 20)
tuning based on MAE
set.seed(30) # for reproducbility in this vignette,
otherwise increase nrepeat
tune.spls.MAE <- tune.spls(X, Y, ncomp = 3,

test.keepX = list.keepX,
validation = "Mfold", folds = 5,
nrepeat = 10, progressBar = FALSE,
measure = 'MAE')

plot(tune.spls.MAE, legend.position = 'topright')

Tuning parameter and numerical outputs

1.1

1.2

1.3

3 5 10
Number of selected features

M
A

E

Comp

1

1 to 2

1 to 3

Based on the lowest MAE obtained on each component, the optimal
number of variables to select in the X data set, including all variables in the
Y data set would be:

Tuning parameter

tune.spls.MAE$choice.keepX

comp1 comp2 comp3
15 3 20

To Tune keepX and keepY conjointly, one can tune one parameter then the other.

Clustered Image Maps

A clustered image map can be produced using the cim function. You may
experience figures margin issues in RStudio. Best is to either use X11()
or save the plot as an external file. For example to show the correlation
structure between the X and Y variables selected on component 1:

X11()
cim(MyResult.spls, comp = 1)
cim(MyResult.spls, comp = 1, save = 'jpeg',
name.save = 'PLScim')

Relevance networks

Using the same similarity matrix input in CIM, we can also represent relevance
bipartite networks. Those networks only represent edges between on type of
variable from X and the other type of variable, from Y. Whilst we use sPLS to
narrow down to a few key correlated variables, our keepX and keepY values might
still be very high for this kind of output. A cut-off can be set based on the
correlation coefficient between the different types of variables.

Other arguments such as interactive = TRUE enables a scrollbar to change the
cut-off value interactively, see other options in ?network. Additionally, the graph
object can be saved to be input into Cytoscape for an improved visualisation.

X11()
network(MyResult.spls, comp = 1)
network(MyResult.spls, comp = 1, cutoff = 0.6,

save = 'jpeg', name.save = 'PLSnetwork')
save as graph object for cytoscape
myNetwork <- network(MyResult.spls, comp = 1)$gR

Sparse PCA in action

*I would like to apply PCA but also be able to identify the key
variables that contribute to the explanation of most variance in
the data set.*

data(liver.toxicity)
X <- liver.toxicity$gene
MyResult.spca <- spca(X, ncomp = 3, keepX = c(15,10,5)) # 1 Run the method
plotIndiv(MyResult.spca, group = liver.toxicity$treatment$Dose.Group, # 2 Plot the samples

pch = as.factor(liver.toxicity$treatment$Time.Group),
legend = TRUE, title = 'Liver toxicity: genes, sPCA comp 1 - 2',
legend.title = 'Dose', legend.title.pch = 'Exposure')

plotVar(MyResult.spca, cex = 1) # 3 Plot the variables
cex is used to reduce the size of the labels on the plot

Plot the samples

Liver toxicity: genes, sPCA comp 1 − 2

−8 −4 0 4

−2.5

0.0

2.5

5.0

PC1: 23% expl. var

P
C

2:
 1

7%
 e

xp
l.

va
r

Dose

150

1500

2000

50

Exposure

18

24

48

6

Plot the samples

A_43_P20891

A_43_P23061

A_43_P22469

A_43_P21243

A_43_P14037

A_43_P21269

A_43_P15845

A_43_P11409
A_43_P16829

A_43_P20475

A_42_P680505

A_43_P20281
A_42_P814129

A_43_P21483
A_42_P751969

A_42_P620095

A_42_P761756
A_42_P708480

A_42_P795796
A_42_P470649

A_43_P12751

A_43_P13317

A_43_P22616
A_42_P545943

A_42_P765066

Correlation Circle Plots

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2

Selected variables can be identified on each component with the
selectVar function. # Selected variables

Here the coefficient values are extracted, but there are other
outputs, see ?selectVar:
selectVar(MyResult.spca, comp = 1)$value

value.var
A_43_P20281 -0.39077443
A_43_P16829 -0.38898291
A_43_P21269 -0.37452039
A_43_P20475 -0.32482960
A_43_P20891 -0.31740002
A_43_P14037 -0.27681845
A_42_P751969 -0.26140533
A_43_P15845 -0.22392912
A_42_P814129 -0.18838954
A_42_P680505 -0.18672610
A_43_P21483 -0.16202222
A_43_P21243 -0.13259471
A_43_P22469 -0.12493156
A_43_P23061 -0.12255308
A_43_P11409 -0.09768656

Those values correspond to the loading weights that are used to define each
component. A large absolute value indicates the importance of the variable in this
PC. Selected variables are ranked from the most important (top) to the least
important.

Selected variables

We can complement this output with plotLoadings. We can see
here that all coefficients are negative.
plotLoadings(MyResult.spca)

A_43_P20281
A_43_P16829
A_43_P21269
A_43_P20475
A_43_P20891
A_43_P14037

A_42_P751969
A_43_P15845

A_42_P814129
A_42_P680505

A_43_P21483
A_43_P21243
A_43_P22469
A_43_P23061
A_43_P11409

−0.3 −0.2 −0.1 0.0

Loadings on comp 1

Selected variables
If we look at component two, we can see a mix of positive and
negative weights (also see in the plotVar), those correspond to
variables that oppose the low and high doses (see from the
‘plotIndiv):

selectVar(MyResult.spca, comp=2)$value

value.var
A_42_P470649 -0.57806702
A_42_P795796 -0.44100784
A_42_P761756 -0.36558200
A_43_P12751 -0.32721979
A_42_P765066 0.30628938
A_42_P708480 -0.24273534
A_42_P545943 0.23040165
A_42_P620095 -0.12099536
A_43_P22616 0.09024518
A_43_P13317 -0.04499990

Selected variables

plotLoadings(MyResult.spca, comp = 2)

A_42_P470649

A_42_P795796

A_42_P761756

A_43_P12751

A_42_P765066

A_42_P708480

A_42_P545943

A_42_P620095

A_43_P22616

A_43_P13317

−0.4 −0.2 0.0 0.2

Loadings on comp 2

Tuning parameters

For this set of methods, two parameters need to be chosen:

I The number of components to retain,
I The number of variables to select on each component for

sparse PCA.

Tuning parameters

I The function tune.pca calculates the percentage of variance
explained for each component, up to the minimum between the
number of rows, or column in the data set.

I The ‘optimal’ number of components can be identified if an
elbow appears on the screeplot. In the example below the
cut-off is not very clear, we could choose 2 components.

tune.pca(X)

Tuning parameters

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

Principal Components

P
ro

po
rt

io
n

of
 E

xp
la

in
ed

 V
ar

ia
nc

e

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Regarding the number of variables to select in sparse PCA, there is not clear
criterion at this stage. As PCA is an exploration method, we recommend to set
arbitrary thresholds that will pinpoint the key variables to focus on during the
interpretation stage.

Other implementation of Sparse PCA

The R package elasticnet provides the spca function to perform
a sparse PCA model.

library(elasticnet)

However, the package does not provide a function to choose the
number of variables in each component.

The R package PMA provides a way to tune the number of variables
in each component. You can explore the function SPC.cv for it.

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("impute", version = "3.8")
library(PMA)
?SPC.cv

Take Home Message: Sparse PCA and PLS

- Sparse version enables us variable selection

- Tunning parameters could be difficult to calibrate

- Use cross-validation approach for tunning parameters

