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Biological question

I am analysing a single data set (e.g. transcriptomics data) and
I would like to classify my samples into known groups and
predict the class of new samples. In addition, I am interested in
identifying the key variables that drive such discrimination.*



The srbct study

The data are directly available in a processed and normalised format from the
mixOmics package. The Small Round Blue Cell Tumours (SRBCT) dataset
includes the expression levels of 2,308 genes measured on 63 samples.

I The samples are classified into four classes as follows: 8 Burkitt Lymphoma
(BL), 23 Ewing Sarcoma (EWS), 12 neuroblastoma (NB), and 20
rhabdomyosarcoma (RMS).

The srbct dataset contains the following:

gene: a data frame with 63 rows and 2308 columns. The expression levels of
2,308 genes in 63 subjects.

class: a class vector containing the class tumour of each individual (4 classes in
total).

gene.name: a data frame with 2,308 rows and 2 columns containing further
information on the genes.

To illustrate PLS-DA, we will analyse the gene expression levels of srbct$gene to
discriminate the 4 groups of tumours.



Principle of sparse PLS-DA

Although Partial Least Squares was not originally designed for
classification and discrimination problems, it has often been used for
that purpose.

The response matrix ‘Y‘ is qualitative and is internally recoded
as a dummy block matrix that records the membership of each
observation, i.e. each of the response categories are coded via
an indicator variable.

The PLS regression (now PLS-DA) is then run as if Y was a
continuous matrix.



Principle of sparse PLS-DA

Sparse PLS-DA performs variable selection and classification in
a one step procedure. sPLS-DA is a special case of sparse PLS
described previously, where `1 penalization is applied on the
loading vectors associated to the X data set.



Principle of sparse PLS-DA

library(mixOmics)
data(srbct)
X <- srbct$gene
Y <- srbct$class
summary(Y)

EWS BL NB RMS
23 8 12 20

dim(X); length(Y)

[1] 63 2308

[1] 63



Quick start

For a quick start we arbitrarily set the number of variables to select
to 50 on each of the 3 components of PLS-DA.
# 1 Run the method
MyResult.splsda <- splsda(X, Y, keepX = c(50,50))
# 2 Plot the samples
plotIndiv(MyResult.splsda)

# 3 Plot the variables
plotVar(MyResult.splsda)

# Selected variables on component 1
selectVar(MyResult.splsda, comp=1)$name



Plot samples
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Plot variables
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Comments

I We can observe a clear discrimination between the BL samples and
the others on the first component (x-axis), and EWS vs the others on
the second component (y-axis).

I Remember that this discrimination spanned by the first two PLS-DA
components is obtained based on a subset of 100 variables (50
selected on each component).

I From the plotIndiv the axis labels indicate the amount of variation
explained per component.

I Note that the interpretation of this amount is not the same as in PCA.
In PLS-DA, the aim is to maximise the covariance between X and Y,
not only the variance of X as it is the case in PCA!



PLS-DA

PLS-DA without variable selection can be performed as:
MyResult.plsda <- plsda(X,Y) # 1 Run the method
plotIndiv(MyResult.plsda) # 2 Plot the samples

plotVar(MyResult.plsda) # 3 Plot the variables



Customize sample plots
plotIndiv(MyResult.splsda, ind.names = FALSE, legend=TRUE,

ellipse = TRUE, star = TRUE, title = 'sPLS-DA on SRBCT',
X.label = 'PLS-DA 1', Y.label = 'PLS-DA 2')

sPLS−DA on SRBCT
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Customize variable plots
plotVar(MyResult.splsda, var.names=FALSE)
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Customize variable plots
plotVar(MyResult.plsda, cutoff=0.7)
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In this particular case, no variable selection was performed. Only the display was
altered to show a subset of variables.



Other useful plots



ROC

As PLS-DA acts as a classifier, we can plot a ROC Curve to complement the
sPLS-DA classification performance results detailed latter. The AUC is calculated
from training cross-validation sets and averaged.

auc.plsda <- auroc(MyResult.splsda)
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Variable selection outputs
First, note that the number of variables to select on each component
does not need to be identical on each component, for example:
MyResult.splsda2 <- splsda(X,Y, ncomp=3, keepX=c(15,10,5))

Selected variables are listed in the selectVar function:

selectVar(MyResult.splsda2, comp=1)$value

value.var
g123 0.53516982
g846 0.41271455
g335 0.30309695
g1606 0.30194141
g836 0.29365241
g783 0.26329876
g758 0.25826903
g1386 0.23702577
g1158 0.15283961
g585 0.13838913
g589 0.12738682
g1387 0.12202390
g1884 0.08458869
g1295 0.03150351
g1036 0.00224886



plotLoadings

Selected variables can be visualised in plotLoadings with the arguments
contrib = 'max' that is going to assign to each variable bar the sample group
colour for which the mean (method = 'mean') is maximum. See
example(plotLoadings) for other options (e.g. min, median)

plotLoadings(MyResult.splsda2, contrib = 'max', method = 'mean')
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Comments

I Interestingly from this plot, we can see that all selected
variables on component 1 are highly expressed in the BL
(orange) class.

I Setting contrib = 'min' would highlight that those variables
are lowly expressed in the NB grey class, which makes sense
when we look at the sample plot.

I Since 4 classes are being discriminated here, samples plots in
3d may help interpretation:

plotIndiv(MyResult.splsda2, style="3d")



Tuning parameters and numerical outputs

For this set of methods, three parameters need to be chosen:

1 - The number of components to retain ncomp. The rule of thumb is
usually K − 1 where K is the number of classes, but it is worth
testing a few extra components.

2 - The number of variables keepX to select on each component for
sparse PLS-DA,

3 - The prediction distance to evaluate the classification and
prediction performance of PLS-DA.



Tuning parameters and numerical outputs

I For item 1, the perf evaluates the performance of PLS-DA for
a large number of components, using repeated k-fold
cross-validation.

I For example here we use 3-fold CV repeated 10 times (note
that we advise to use at least 50 repeats, and choose the
number of folds that are appropriate for the sample size of the
data set):



Tuning parameters and numerical outputs

MyResult.plsda2 <- plsda(X,Y, ncomp=10)
set.seed(30) # for reproducibility in this vignette, otherwise increase nrepeat
MyPerf.plsda <- perf(MyResult.plsda2, validation = "Mfold", folds = 3,

progressBar = FALSE, nrepeat = 10) # we suggest nrepeat = 50

# type attributes(MyPerf.plsda) to see the different outputs
# slight bug in the output function currently see the quick fix below

plot(MyPerf.plsda, col = color.mixo(5:7), sd = TRUE, legend.position = "horizontal",ylim=c(0,0.4))



Tuning parameters and numerical outputs
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Comments

I The plot outputs the classification error rate, or Balanced
classification error rate when the number of samples per group
is unbalanced, the standard deviation according to three
prediction distances.

I Here we can see that for the BER and the maximum distance,
the best performance (i.e. low error rate) seems to be achieved
for ncomp = 3.



Prediction performance

In addition (item 3 for PLS-DA), the numerical outputs listed here
can be reported as performance measures:
MyPerf.plsda

Call:
perf.plsda(object = MyResult.plsda2, validation = "Mfold", folds = 3, nrepeat = 10, progressBar = FALSE)

Main numerical outputs:
--------------------
Error rate (overall or BER) for each component and for each distance: see object$error.rate
Error rate per class, for each component and for each distance: see object$error.rate.class
Prediction values for each component: see object$predict
Classification of each sample, for each component and for each distance: see object$class
AUC values: see object$auc if auc = TRUE

Visualisation Functions:
--------------------
plot



The number of variables

I Regarding item 2, we now use tune.splsda to assess the
optimal number of variables to select on each component.

I We first set up a grid of keepX values that will be assessed on
each component, one component at a time.

I Similar to above we run 3-fold CV repeated 10 times with a
maximum distance prediction defined as above.

list.keepX <- c(5:10, seq(20, 100, 10))
list.keepX # to output the grid of values tested

[1] 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

set.seed(30) # for reproducbility
tune.splsda.srbct <- tune.splsda(X, Y, ncomp = 3,

validation = 'Mfold',
folds = 3, dist = 'max.dist', progressBar = FALSE,
measure = "BER", test.keepX = list.keepX,
nrepeat = 10) # we suggest nrepeat = 50



Comments

We can then extract the classification error rate averaged across all
folds and repeats for each tested keepX value, the optimal number
of components (see ?tune.splsda for more details), the optimal
number of variables to select per component which is summarised
in a plot where the diamond indicated the optimal keepX value:
error <- tune.splsda.srbct$error.rate
ncomp <- tune.splsda.srbct$choice.ncomp$ncomp
# optimal number of components based on t-tests on the error rate
ncomp

[1] 3

select.keepX <- tune.splsda.srbct$choice.keepX[1:ncomp]
# optimal number of variables to select
select.keepX

comp1 comp2 comp3
50 50 70



Tune

plot(tune.splsda.srbct, col = color.jet(ncomp))
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Final model

Based on those tuning results, we can run our final and tuned
sPLS-DA model:
MyResult.splsda.final <- splsda(X, Y, ncomp = ncomp, keepX =

select.keepX)
plotIndiv(MyResult.splsda.final, ind.names = FALSE, legend=TRUE,

ellipse = TRUE, title="SPLS-DA, Final result")



Final comment

- Additionally we can run ‘perf‘ for the final performance of the
sPLS-DA model. Also note that ‘perf‘ will output ‘features‘ that
lists the frequency of selection of the variables across the
different folds and different repeats.

- This is a useful output to assess the confidence of your final
variable selection, see a more [detailed example
here](http://mixomics.org/case-studies/splsda-srbct/).



Take Home Message: PLS-DA and sPLS-DA

- Dimension Reduction approach

- supervised method for qualitative response variable

- Similar as discriminant analysis

- sparse version enables us variable selection


