
Introduction to PCA and PLS

Benoit Liquet ∗

∗benoit.liquet-weiland@mq.edu.au

22 May 2024

Abstract

This document presents briefly the Principal Component Analyis (PCA) and the Partial Least
Square method (PLS). These popular reduction methods are presented through different case
studies using different R packages. Sparse versions which enable variable selection are also
presented.

Contents

1 Introduction . 3

1.1 Data and Goals. 3

1.2 Example: Data definition . 3

1.3 Questions . 3

1.4 Low-Dimensional Versus High-Dimensional 4

1.5 Dimension Reduction . 5

1.6 Supervised Learning or Unsupervised Leraning 5

2 Principal Component Analysis 6

2.1 Definition: Principal Component Analysis (PCA) 6

2.2 PCA: The main Idea . 7

2.3 The Criterion for Principal Components 7

2.4 The 1-Dimensional PCA Solution 8

2.5 The Full PCA Solution for 2 Dimensions 8

2.6 PCA: Summary. 9

2.7 Objective function for PCA . 10

2.8 Singular Value Decomposition (SVD) 10

2.9 Relation of PCA and SVD . 10

2.10 Illustration PCA: GWAS . 11

2.11 SVD as a Compression/Dimension Reduction Tool. 14

2.12 Case Study: The liver.toxicity study 15

3 Partial Least Square (PLS) . 20

3.1 Modelling Aims . 20

Introduction to PCA and PLS

3.2 Objective function: . 21

3.3 Univariate case Y ∈ <n . 21

3.4 Partial Least Squares: regression mode (multivariate case: Y (n ×
q)) . 22

3.5 Algorithm: regression mode . 22

3.6 PLS connected to Singular Value Decomposition (SVD) 23

3.7 PLS in practice: the nutrimouse study 23

3.8 Tuning parameters and numerical outputs 28

4 Sparse Version of PCA and PLS 30

4.1 Sparse Version . 30

4.2 Intuition of sparse PCA and sparse PLS 31

4.3 Example sparse PLS . 32

4.4 Choice of the sparsity: λh1 and λh2 32

4.5 Sparse PLS in action . 32

4.6 Sparse PCA in action . 37

4.7 Tuning parameters . 39

4.8 Other implementation of Sparse PCA 40

5 PLS - Discriminant Analysis (PLS-DA) and Sparse PLS-DA . . 41

5.1 Biological question . 41

5.2 The srbct study . 41

5.3 Principle of sparse PLS-DA . 42

5.4 To go further . 43

6 Extension of Sparse PLS . 49

6.1 Incorporating Group structures within the data 49

6.2 Aims in regression setting: . 49

6.3 Sparse Models . 50

6.4 Optimisation functions . 50

6.5 sparse group subgroup PLS 51

6.6 R Package . 52

6.7 Big sgPLS . 52

References . 53

2

Introduction to PCA and PLS

1 Introduction

1.1 Data and Goals
Goal of Integrative Analysis:

Wikipedia. Data integration “involves combining data residing in different sources and
providing users with a unified view of these data. This process becomes significant in a variety
of situations, which include both commercial and scientific”.

System Biology. Integrative Analysis: Analysis of heterogeneous types of data from inter-
platform technologies.

Goal. Combine multiple types of data:
• Contribute to a better understanding of biological mechanism.
• Have the potential to improve the diagnosis and treatments of complex diseases.

1.2 Example: Data definition

- n observations

- p variables

X
n

- n observations

- q variables

Y
n

p q

• “Omics.’ ’ Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism).
Many others such as proteomic, metabolomic data.

• “neuroimaging’ ’. Y matrix: behavioral variables, X matrix: brain activity (e.g., EEG,
fMRI, NIRS)

• “neuroimaging genetics.’ ’ Y matrix: fMRI (Fusion of functional magnetic resonance
imaging), X matrix: SNP

• “Ecology/Environment.’ ’ Y matrix: Water quality variables , X matrix: Landscape
variables

1.3 Questions

- n observations

- p variables

X
n

- n observations

- q variables

Y
n

p q

Some possible questions:
• How to investigate the relation of these two blocks of Data?

3

Introduction to PCA and PLS

• How to dentify which of the p variables in X (OMICs data) are associated with the
outcome Y (disease status or correlated continuous marker)

• Integrative Omics Analysis: Can we identify a subset of correlated genes and proteins?

1.3.1 Constraints

• The n < p situation:
• More predictors than observations

⇒ numerically intractable statistical inferences
• Data from multiple source.

1.4 Low-Dimensional Versus High-Dimensional
• The data set that you used to analyse in traditional statistics course is low-dimensional:
n >> p

• Lots of the data sets coming out of modern biological techniques are high-dimensional:
n ' p or n << p.

• This poses statistical challenges! For example Linear model no longer applies.

1.4.1 Low Dimensional

1.4.2 High Dimensional

4

Introduction to PCA and PLS

1.5 Dimension Reduction
Dimension Reduction methods is a popular approach to solve the high dimensional situation
(p >> n).
Dimension reduction techniques summarize X into a lower dimension matrix.

1.5.1 Why Dimension Reduction?

• Some features may be irrelevant
• We want to visualize high dimensional data
• High dimensional data often have high degrees of redundancy (correlation among

features).
Dimension Reduction enables us to:

• Map the data into a new low-dimensional space, where important characteristics of the
data are preserved.

• The new space often gives a (linear or non-linear) transformation of the original data.
• Visualization and analysis (clustering/prediction/...) is then performed in the new space.

1.6 Supervised Learning or Unsupervised Leraning

1.6.1 Supervised Learning

5

Introduction to PCA and PLS

1.6.2 Unsupervised Learning

• no response variable
• In biological applications, often p >> n.

1.6.3 Unsupervised Learning Examples

• Do genes/samples in microarray expression data form interesting groups?
• Can individuals’ SNP profiles be used to learn about their ethnic/racial backgrounds?
• Can we find cancer subtypes based on gene/metabolic expression patterns?
• What’s the best way to visualize a high dimensional genomic data?
• How to find "interesting patterns” in the data?

2 Principal Component Analysis
Principal Component Analysis, or PCA, is a well-known and widely used technique applicable
to a wide variety of applications such as dimensionality reduction, data compression, feature
extraction, and visualization. The basic idea is to project a dataset from many correlated
coordinates onto fewer uncorrelated coordinates called principal components while still retaining
most of the variability present in the data (Jolliffe 2005).
As an example, principal component analysis is commonly performed to account for population
stratification in genome wide association study.

2.1 Definition: Principal Component Analysis (PCA)
• Data: n observations living in a p-dimensional space.
• Not all p dimensions are equally useful, especially when p >> n.
• Many are either completely redundant (correlated features) or uninformative (noise

features).
• Need low-dimensional representation of the variables that captures most of the "infor-

mation" in the data.

6

Introduction to PCA and PLS

• To maximize the information retained, we need to minimize the redundancy, and to do
this, we look for low-dimensional representations that capture most of the variation in
the data.

2.2 PCA: The main Idea
What is a good 1-dim representation of the data?

Use a linear combination of the variables; i.e. a weighted average of the variables.

c1 = w1x1 + w2x2

What is a good choice for the weights w1 and w2?

2.3 The Criterion for Principal Components
In PCA, we try to find the direction with maximum variance

Formally, we seek the vector of weights v = (w1, w2)T using the criterion

7

Introduction to PCA and PLS

max
||v||=1

V ar(Xv)

2.4 The 1-Dimensional PCA Solution
The interesting direction according to the PCA criterion is the one that captures the majority
of the variance in the data.

• But, what if we need another direction.
• A systematic way to find additional principal components (PC’s), is to choose subsequent

linear combinations orthogonal/perpendicular to previous ones.
• This means that we want to choose v to be orthogonal to w, but to explain the majority

of variability in the data.
• In the case of 2-dimensional data, there is only one choice!! This is always the case for

the last PC.
• For p > 2, there are many orthogonal vectors to choose from, and we need to find the

one that explains the maximum variation in the data, and is orthogonal to the first one.

2.5 The Full PCA Solution for 2 Dimensions
What is a good 1-dim representation of the data?

8

Introduction to PCA and PLS

2.6 PCA: Summary
Seek the best directions in the data that account for most of the variability
→ principal components: artificial variables that are linear combinations of the original
variables:

c = X v

(n) (n× p) (p)

• c is a linear combination of the elements of X having maximal variance
• v is called the associated loading vector
• For example, we get the first principal component with max. variance

c1 = w1x1 + . . .+ wpxp

where v1 = (w1, . . . , wp)T .
• PCA =⇒ finds units vectors v1, . . . , vr that maximise the variance Xv under the

constraint that vi+1 is orthogonal to v1, . . . , vi

• Reduction dimension:
p variables =⇒ r new variables Xv1, . . . , Xvr called Principal Components

The new PCs form a vectorial subspace of dimension < p

• Project the data on these new axes.
→ approximate representation of the data points in a lower dimensional space

• The first few PCs account for most of the variation in all the original variables

9

Introduction to PCA and PLS

2.6.1 Cons:

• Interpretation difficult with very large number of variables
• Unsupervised approach

2.7 Objective function for PCA
Objective function:

max
||vh||=1

var(Xhvh), h = 1 . . . H

Several ways of solving PCA:
1. Eigenvalue problem: Sv = λv; c = Xv

S = variance covariance matrix or correlation matrix if X is scaled

2. Singular Value Decomposition (SVD):

X = UDV T

where the columns of U(n× r) and V (p× r) are orthonormal; D = diag[d1, . . . , dr]
such that d1 ≥ d2 ≥ . . . ≥ dr > 0 are the square root of the eigenvalue of XTX.

2.7.1 Solution based on SVD Decomposition

• The column of C = UD are the principal component;
• The columns of V are the corresponding loading.
• The variance of a principal component c1 is equal to its associated eigenvalue λ1.
• The obtained eigenvalues λj are decreasing.

2.8 Singular Value Decomposition (SVD)
Singular Value Decomposition, or SVD, is a computational method often employed to calculate
principal components for a dataset. Using SVD to perform PCA is efficient and numerically
robust. (see https://intoli.com/blog/pca-and-svd/).
Let a matrix M : p× q of rank r:

M = U∆V T =
r∑
l=1

δlulv
T
l ,

• U = (ul) : p× p and V = (vl) : q × q are two orthogonal matrices which contain the
normalised left (resp. right) singular vectors

• ∆ = diag(δ1, . . . , δr, 0, . . . , 0): the ordered singular values δ1 ≥ δ2 ≥ · · · ≥ δr > 0.

2.9 Relation of PCA and SVD
Let the data matrix X be of n×p size, where n is the number of samples and p is the number
of variables. Let us assume that it is centered, i.e. column means have been subtracted and
are now equal to zero.

10

https://intoli.com/blog/pca-and-svd/

Introduction to PCA and PLS

Then the p× p covariance matrix C is given by C = XTX/(n− 1). It is a symmetric matrix
and so it can be diagonalized:

C = V LV T ,

where V is a matrix of eigenvectors (each column is an eigenvector) and L is a diagonal
matrix with eigenvalues λi in the decreasing order on the diagonal.
The eigenvectors are called principal axes or principal directions of the data.
Projections of the data on the principal axes are called principal components, also known as
PC scores; these can be seen as new, transformed, variables.
The j-th principal component is given by j-th column of XV . The coordinates of the i-th
data point in the new PC space are given by the i-th row of XV .
if we now perform singular value decomposition of X, we obtain a decomposition

X = U∆V T ,

From here one can easily see that

C = V∆TUTU∆V T /(n− 1) = V
∆2

n− 1V
T ,

meaning that right singular vectors V are principal directions and that singular values are
related to the eigenvalues of covariance matrix via λi = s2

i /(n− 1).
Principal components are given by XV = U∆V TV = U∆.

2.10 Illustration PCA: GWAS
The dataset comes from the R package bigstatr (Privé et al. 2018). It is a subset of a
Genome Wide Asssociation study.
The variables are Single Nucleotide Polymorphism (SNPs) coded 0,1 amd 2 represented the
number of rare allele at different locus (https://ghr.nlm.nih.gov/primer/genomicresearch/snp).
Principal Components Analysis (PCA) is a popular tool that has been used to infer population
structure in genetic data for several decades (see Patterson, Price, and Reich (2006))
library(bigstatsr)

set.seed(1)

X <- big_attachExtdata()

n <- nrow(X)

X[1:2,1:3]

[,1] [,2] [,3]

[1,] 2 2 0

[2,] 1 2 1

dim(X)

[1] 517 4542

We only use only half of the data

11

https://ghr.nlm.nih.gov/primer/genomicresearch/snp

Introduction to PCA and PLS

ind <- sort(sample(n, n/2))

test <- big_SVD(X, fun.scaling = big_scale(), ind.row = ind)

str(test)

List of 5

$ d : num [1:10] 178.5 114.5 91 87.1 86.3 ...

$ u : num [1:258, 1:10] -0.1092 -0.0928 -0.0806 -0.0796 -0.1028 ...

$ v : num [1:4542, 1:10] 0.00607 0.00739 0.02921 -0.01283 0.01473 ...

$ center: num [1:4542] 1.34 1.63 1.51 1.64 1.09 ...

$ scale : num [1:4542] 0.665 0.551 0.631 0.55 0.708 ...

- attr(*, "class")= chr "big_SVD"

we project the sample on a lower dimensional space to see any structure
plot(test$u)

−0.10 −0.05 0.00 0.05

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

test$u[,1]

te
st

$u
[,2

]

class(test)

[1] "big_SVD"

• A more realistic projection based on the scores
scores <- test$u %*% diag(test$d)

plot(scores[,2]~scores[,1])

12

Introduction to PCA and PLS

−20 −15 −10 −5 0 5 10

−
10

−
5

0
5

10
15

scores[, 1]

sc
or

es
[,

2]

using the classical pca from R
pca <- prcomp(X[ind,], center = TRUE, scale. = TRUE)

same scaling

all.equal(test$center, pca$center)

[1] TRUE

all.equal(test$scale, pca$scale)

[1] TRUE

projecting on new data
projecting on new data

ind2 <- setdiff(rows_along(X), ind)

scores.test2 <- predict(test, X, ind.row = ind2)

plot(scores[,2]~scores[,1])

points(scores.test2[,2]~scores.test2[,1],col="red")

−20 −15 −10 −5 0 5 10

−
10

−
5

0
5

10
15

scores[, 1]

sc
or

es
[,

2]

Using top PCs as covariates corrects for stratification in GWAS. For example, for case control
studies one can use the following model to detect variants which are related to a disease:

13

Introduction to PCA and PLS

logit(P (Y = 1|SNPj , PC1, . . . , PC20)) = β0 + β1SNPj + γ1PC1 + . . .+ γ20PC20

2.11 SVD as a Compression/Dimension Reduction Tool
We start by reading an image and we perform SVDs on this image.
if (!"jpeg" %in% installed.packages()) install.packages("jpeg")

Read image file into an array with three channels (Red-Green-Blue, RGB)

liquet <- jpeg::readJPEG("liquet.jpeg")

r <- liquet[, , 1] ; g <- liquet[, , 2] ; b <- liquet[, , 3]

Performs full SVD of each channel

liquet.r.svd <- svd(r) ; liquet.g.svd <- svd(g) ; liquet.b.svd <- svd(b)

rgb.svds <- list(liquet.r.svd, liquet.g.svd, liquet.b.svd)

These two functions will be needed to display an image stored in an RGB array:
Function to display an image stored in an RGB array

plot.image <- function(pic, main = "") {

h <- dim(pic)[1] ; w <- dim(pic)[2]

plot(x = c(0, h), y = c(0, w), type = "n", xlab = "", ylab = "", main = main)

rasterImage(pic, 0, 0, h, w)

}

Function to compress an image via SVD of each channel

compress.image <- function(rgb.svds, nb.comp) {

nb.comp (number of components) should be less than min(dim(img[,,1])),

i.e., 170 here

svd.lower.dim <- lapply(rgb.svds, function(i) list(d = i$d[1:nb.comp],

u = i$u[, 1:nb.comp],

v = i$v[, 1:nb.comp]))

img <- sapply(svd.lower.dim, function(i) {

img.compressed <- i$u %*% diag(i$d) %*% t(i$v)

}, simplify = 'array')

img[img < 0] <- 0

img[img > 1] <- 1

return(list(img = img, svd.reduced = svd.lower.dim))

}

Let’s plot side-by-side the original and compressed images now.
par(mfrow = c(1, 2))

plot.image(liquet, "Original image")

p <- 20 ; plot.image(compress.image(rgb.svds, p)$img,

paste("SVD with", p, "components"))

14

Introduction to PCA and PLS

0 50 100 150 200 250

0
50

10
0

15
0

Original image

0 50 100 150 200 250

0
50

10
0

15
0

SVD with 20 components

As you can see, with 20 components (over 170 maximum), we can still recognize Benoit!
How much compression did we achieve with 20 components?
object.size(rgb.svds) # Original image

1740920 bytes

object.size(compress.image(rgb.svds, p)$svd.reduced) # Compressed image

207320 bytes

2.12 Case Study: The liver.toxicity study
I would like to thanks mixOmics team (I contributed in the past) to their great work on
Multivariate Analysis tools. Great materials are provided in the website http://mixomics.org.
This case study has been well and the data are availaible in the mixOmics R packages

First, you have to install the R package mixOmics (Rohart et al. 2017) which is now availaible
on Bioconductor
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("mixOmics", version = "3.8")

library(mixOmics)

The liver.toxicity is a list in the package that contains:
• gene: a data frame with 64 rows and 3116 columns, corresponding to the expression

levels of 3,116 genes measured on 64 rats.
• clinic: a data frame with 64 rows and 10 columns, corresponding to the measurements

of 10 clinical variables on the same 64 rats.
• treatment: data frame with 64 rows and 4 columns, indicating the treatment information

of the 64 rats, such as doses of acetaminophen and times of necropsy.
• gene.ID: a data frame with 3116 rows and 2 columns, indicating geneBank IDs of the

annotated genes.

15

http://mixomics.org

Introduction to PCA and PLS

More details are available at ?liver.toxicity.

2.12.1 Load the data

We first load the data from the package.
data(liver.toxicity)

X <- liver.toxicity$gene

2.12.2 Quick start

MyResult.pca <- pca(X) # 1 Run the method

plotIndiv(MyResult.pca) # 2 Plot the samples

plotVar(MyResult.pca) # 3 Plot the variables

If you were to run pca with this minimal code, you would be using the following default values:
• ncomp =2: the first two principal components are calculated and are used for graphical

outputs;
• center = TRUE: data are centred (mean = 0)
• scale = FALSE: data are not scaled. If scale = TRUE standardizes each variable (vari-

ance = 1).
Other arguments can also be chosen, see ?pca.
The two plots are not extremely meaningful as specific sample patterns should be further
investigated and the variable correlation circle plot contains too many variables to be easily
interpreted. Let’s improve those graphics as shown below to improve interpretation.

2.12.3 Customize plots

Plots can be customized using numerous options in plotIndiv and plotVar. For instance, even
if PCA does not take into account any information regarding the known group membership of
each sample, we can include such information on the sample plot to visualize any ‘natural’
cluster that may corresponds to biological conditions.
Here is an example where we include the sample groups information with the argument group:
plotIndiv(MyResult.pca, group = liver.toxicity$treatment$Dose.Group,

legend = TRUE)

16

Introduction to PCA and PLS

ID202

ID203

ID204
ID206

ID208

ID209

ID210

ID211

ID212

ID213
ID214

ID216

ID217

ID220

ID221

ID223

ID302

ID303

ID306

ID307

ID308

ID310ID311

ID312

ID314ID315

ID316

ID317

ID318

ID319

ID320

ID324

ID402

ID403

ID404

ID405

ID406

ID407

ID411

ID412

ID413
ID414

ID416

ID419

ID420

ID421

ID423

ID424

ID501

ID503

ID505ID506

ID508

ID509

ID510ID512

ID513

ID514

ID516
ID518

ID520

ID521

ID522

ID524

PlotIndiv

−5 0 5 10

−5

0

5

PC1: 36% expl. var

P
C

2:
 1

8%
 e

xp
l.

va
r

Legend

150

1500

2000

50

Additionally, two factors can be displayed using both colours (argument group) and symbols
(argument pch). For example here we display both Dose and Time of exposure and improve
the title and legend:
plotIndiv(MyResult.pca, ind.names = FALSE,

group = liver.toxicity$treatment$Dose.Group,

pch = as.factor(liver.toxicity$treatment$Time.Group),

legend = TRUE, title = 'Liver toxicity: genes, PCA comp 1 - 2',

legend.title = 'Dose', legend.title.pch = 'Exposure')

Liver toxicity: genes, PCA comp 1 − 2

−5 0 5 10

−5

0

5

PC1: 36% expl. var

P
C

2:
 1

8%
 e

xp
l.

va
r

Dose

150

1500

2000

50

Exposure

18

24

48

6

By including information related to the dose of acetaminophen and time of exposure enables us
to see a cluster of low dose samples (blue and orange, top left at 50 and 100mg respectively),
whereas samples with high doses (1500 and 2000mg in grey and green respectively) are more
scattered, but highlight an exposure effect.

17

Introduction to PCA and PLS

To display the results on other components, we can change the comp argument provided
we have requested enough components to be calculated. Here is our second PCA with 3
components:
MyResult.pca2 <- pca(X, ncomp = 3)

plotIndiv(MyResult.pca2, comp = c(1,3), legend = TRUE,

group = liver.toxicity$treatment$Time.Group,

title = 'Multidrug transporter, PCA comp 1 - 3')

ID202
ID203

ID213
ID214ID302ID303ID314ID315

ID402

ID403

ID413

ID414
ID501

ID503

ID513
ID514

ID204
ID206

ID216

ID217ID306ID316ID317ID318

ID404ID405

ID406

ID416

ID505

ID506

ID516

ID518

ID208

ID209

ID220
ID221

ID307
ID308

ID319
ID320 ID407

ID419

ID420

ID421

ID508
ID509

ID520

ID521

ID210

ID211

ID212ID223

ID310

ID311 ID312ID324

ID411

ID412

ID423
ID424

ID510

ID512

ID522

ID524

Multidrug transporter, PCA comp 1 − 3

−5 0 5 10

−5.0

−2.5

0.0

2.5

5.0

PC1: 36% expl. var

P
C

3:
 9

%
 e

xp
l.

va
r

Legend

18

24

48

6

Here, the 3rd component on the y-axis clearly highlights a time of exposure effect.

2.12.4 Amount of variance explained and choice of number of components

The amount of variance explained can be extracted with the following: a screeplot or the
actual numerical proportions of explained variance, and cumulative proportion.
MyResult.pca3 <- pca(X, ncomp = 10)

plot(MyResult.pca3)

1 2 3 4 5 6 7 8 9 10

Principal Components

E
xp

la
in

ed
 V

ar
ia

nc
e

0.
00

0.
10

0.
20

0.
30

18

Introduction to PCA and PLS

MyResult.pca3

Eigenvalues for the first 10 principal components, see object$sdevˆ2:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

17.9714164 9.0792340 4.5677094 3.2043829 1.9567988 1.4686086 1.3281206

PC8 PC9 PC10

1.0820554 0.8434155 0.6373565

##

Proportion of explained variance for the first 10 principal components, see object$prop_expl_var:

PC1 PC2 PC3 PC4 PC5

0.35684128 0.18027769 0.09069665 0.06362638 0.03885429

PC6 PC7 PC8 PC9 PC10

0.02916076 0.02637122 0.02148534 0.01674690 0.01265538

##

Cumulative proportion of explained variance for the first 10 principal components, see object$cum.var:

PC1 PC2 PC3 PC4 PC5

0.3568413 0.5371190 0.6278156 0.6914420 0.7302963

PC6 PC7 PC8 PC9 PC10

0.7594570 0.7858283 0.8073136 0.8240605 0.8367159

##

Other available components:

loading vectors: see object$rotation

Other functions:

plotIndiv, plot, plotVar, selectVar, biplot

There are no clear guidelines on how many components should be included in PCA: it is
data dependent and level of noise dependent. We often look at the ‘elbow’ on the screeplot
above as an indicator that the addition of PCs does not drastically contribute to explain the
remainder variance.

2.12.5 Other useful plots

We can also have a look at the variable coefficients in each component with the loading
vectors. The loading weights are represented in decreasing order from bottom to top in
plotLoadings. Their absolute value indicates the importance of each variable to define each
PC, as represented by the length of each bar. See ?plotLoadings to change the arguments.
a minimal example

plotLoadings(MyResult.pca)

a customized example to only show the top 100 genes

and their gene name

plotLoadings(MyResult.pca, ndisplay = 100,

name.var = liver.toxicity$gene.ID[, "geneBank"],

size.name = rel(0.3))

19

Introduction to PCA and PLS

NM_001137564

NM_031642
NM_138826

NM_001011901
NM_013098
NM_024351
NM_024127
NM_153312

NM_001108441
NR_002704
NM_019291

XM_001079678

NM_001173437

NM_022229
NM_013120
NM_138504
NM_013134
NM_053968

NM_001003401
NM_001108487
NM_001109022

NM_031986
NM_053464

NM_001106147
XM_227081
NM_012495

NM_001034912
NM_001106689

NM_012801
NM_057211
NM_057133

NM_001109022
NM_177928
NM_019376
NM_017332
NM_053516

NM_001008337
NM_001004415

NM_031344

NM_012621
NM_138827

NM_001007634
NM_001004082

NM_053352

−0.05 0.00 0.05 0.10

Loadings on comp 1

Such representation will be more informative once we select a few variables using an extension
of PCA called Sparse PCA.
Plots can also be displayed in 3 dimensions using the option style="3d", and interactively
(we use the rgl package for this).
plotIndiv(MyResult.pca2,

group = liver.toxicity$treatment$Dose.Group, style="3d",

legend = TRUE, title = 'Liver toxicity: genes, PCA comp 1 - 2 - 3')

3 Partial Least Square (PLS)
PLS is a family of multivariate statistical techniques based on dimension reduction developed
by S. Wold and H. Wold (1966, 1983). It can be seen as a supervised version of PCA.

Predictor matrix:

- n observations

- p variables

X
n Response matrix:

- n observations

- q variables

Y
n

p q

3.1 Modelling Aims
Partial Least Square is also a Dimension reduction method with the two following aims:

• Symmetric relationship: analyse the shared information.
• Asymmetric relationship: X = predictors, and Y = response.

When Y is only one column (univariate case), PLS can be summarized as
• Dimension reduction method: p dimension space ⇒ K dimension space (K << p)
• PLS looks the best components the most correlated to the response variable

20

Introduction to PCA and PLS

• The PLS components are linear combinations of the variables

Ck = u1 × SNP1 + u2 × SNP2 + . . .+ up × SNPp

• It is a supervised approach
In more general case (Y multivariate q > 1):

• PLS finds pairs of latent (score) vectors ξ = Xu, ω = Yv

ξ = u1 × gene1 + u2 × gene2 + · · ·+ up × genep
ω = v1 × pheno1 + v2 × pheno2 + · · ·+ vp × phenoq

• Symmetric relationship. Analyse the shared information.
• Asymmetric relationship. There is a set of response and predictor variables that can be

used for prediction.

3.2 Objective function:

max
||uh||=1,||vh||=1

cov(Xhuh, Yhvh) h = 1 . . . H

Principle:
• Iterative procedure 7→ orthogonal component (latent variable ξh = Xhuh).
• successive local regressions on the latent variables.
• X and Y are successively deflated.

3.3 Univariate case Y ∈ <n

Univariate case Y ∈ <n: step 1 :max||u||=1 cov(Xu, Y)

cov(Xu, Y) = (Xu)TY
= < u, XTY >= ||XTY ||cos(u, XTY)

↪→ u = XTY
||XTY ||

21

Introduction to PCA and PLS

• Step 2: find a new linear combination no correlated to ξ = Xu which explain the
residuals Y − dξ where d is the regression of Y on ξ = Xu

• Deflated step: Y ← Y − dξ and X ← X − ξcT where c is the regression of X on
ξ = Xu;

• the columns of the new X are orthogonal (no correlated) to Xu.

3.4 Partial Least Squares: regression mode (multivariate case:
Y (n× q))

x x yx y y2 p 21 q1

h

ξ
h

1

2

n

1

2

n

ω
h

u v
h

c
h

e
h

X =
h

= X
h−1

− ξ
h
c’

h
Y

h
Y

h−1
ω

h
e’

h
−

For each iteration h, h = 1..H, decompose X and Y into:
1. Loadings vectors uh and vh, p- and q- dimensional vectors
2. Latent variables ξh and ωh, n-dimensional vectors
3. Regression of Xh−1 and Yh−1 on ξh reg. coeff. ch and eh
4. Residual matrices: deflation step of Xh−1 and Yh−1

3.5 Algorithm: regression mode
Objective function:

max
||uh||=1,||vh||=1

cov(Xhuh, Yhvh) h = 1 . . . H

Start: set w to the first column of Y
1. u = XTw

wTw
, scale u to one. u is the loading vector associated to X

2. ξ = Xu is the latent variable associated to X

3. v = Y T ξ
ξT ξ

, scale v to one. v is the loading vector associated to Y
4. w = Y v is the latent variable associated to Y .
5. If convergence then 6 else 1

6. c = XT ξ
ξT ξ

, e = Y T ξ
ξT ξ

are the partial regression coefficients from the regression of X (Y)
onto ξ.

7. Deflation step: Compute the residual matrices X ← X − ξcT and Y ← Y − ξeT

3.5.1 PLS family

PLS = Partial Least Squares or Projection to Latent Structures
Four main methods coexist in the literature:
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;

22

Introduction to PCA and PLS

(ii) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);
(iii) PLS in mode B (PLS-W2B) also called Canonical Correlation Analysis (CCA);
(iv) Partial Least Squares Regression (PLSR, or PLS2).

• (i),(ii) and (iii) are symmetric while (iv) is asymmetric.
• Different objective functions to optimise.
• Good news: all use the singular value decomposition (SVD).

3.6 PLS connected to Singular Value Decomposition (SVD)

3.6.1 Reminder

Let a matrix M : p× q of rank r:

M = U∆V T =
r∑
l=1

δlulv
T
l ,

• U = (ul) : p× p and V = (vl) : q × q are two orthogonal matrices which contain the
normalised left (resp. right) singular vectors

• ∆ = diag(δ1, . . . , δr, 0, . . . , 0): the ordered singular values δ1 ≥ δ2 ≥ · · · ≥ δr > 0.

3.6.2 Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS methods as:

(u∗, v∗) = argmax
‖u‖2=‖v‖2=1

Cov(Xh−1u, Yh−1v), h = 1, . . . ,H

Matrices Xh and Yh are obtained recursively from Xh−1 and Yh−1.

The four methods differ by the deflation process, chosen so that the above scores or weight
vectors satisfy given constraints.
The solution at step h is obtained by computing only the first triplet (δ1, u1, v1) of singular
elements of the SVD of Mh−1 = XT

h−1Yh−1:

(u∗, v∗) = (u1, v1)

3.7 PLS in practice: the nutrimouse study
The nutrimouse study contains the expression levels of genes potentially involved in nutritional
problems and the concentrations of hepatic fatty acids for forty mice. The data sets come
from a nutrigenomic study in the mouse, in which the effects of five regimens with contrasted
fatty acid compositions on liver lipids and hepatic gene expression in mice were considered.
Two sets of variables were measured on 40 mice:

• gene: the expression levels of 120 genes measured in liver cells, selected among (among
about 30,000) as potentially relevant in the context of the nutrition study. These
expressions come from a nylon microarray with radioactive labelling.

23

Introduction to PCA and PLS

• lipid: concentration (in percentage) of 21 hepatic fatty acids measured by gas chro-
matography.

• diet: a 5-level factor. Oils used for experimental diets preparation were corn and
colza oils (50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated
fatty acid diet (COC), sunflower oil for an Omega6 fatty acid-rich diet (SUN), linseed
oil for an Omega3-rich diet (LIN) and corn/colza/enriched fish oils for the FISH diet
(43/43/14).

• genotype 2-levels factor indicating either wild-type (WT) and PPARα -/- (PPAR).
More details can be found in ?nutrimouse.
To illustrate PLS, we will integrate the gene expression levels (gene) with the concentrations
of hepatic fatty acids (lipid).

3.7.1 Set up the data

We first set up the data as X expression matrix and Y as the lipid abundance matrix. We also
check that the dimensions are correct and match:
library(mixOmics)

data(nutrimouse)

X <- nutrimouse$gene

Y <- nutrimouse$lipid

dim(X); dim(Y)

[1] 40 120

[1] 40 21

3.7.2 Quick start

MyResult.pls <- pls(X,Y, ncomp=10)

plotIndiv(MyResult.pls)

plotVar(MyResult.pls)

If you were to run pls with minimal code, you would be using the following default values:
• ncomp = 2: the first two PLS components are calculated and are used for graphical

outputs;
• scale = TRUE: data are scaled (variance = 1, strongly advised here);
• mode = "regression": by default a PLS regression mode should be used (see ?? for

more details) .
Because PLS generates a pair of components, each associated to each data set, the function
plotIndiv produces 2 plots that represent the same samples projected in either the space
spanned by the X-components, or the Y-components.

3.7.3 Customize sample plots

In addition, you can choose the representation space to be either the components from the
X-data set, the Y- data set, or an average between both components rep.space = 'XY-vari

ate'. See more examples in examples(plotIndiv) and on website. Here are two examples
with colours indicating genotype or diet:

24

http://mixomics.org/graphics/sample-plots/

Introduction to PCA and PLS

plotIndiv(MyResult.pls, group = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Genotype',

ind.names = nutrimouse$diet,

title = 'Nutrimouse: PLS')

lin
sun

sun

fish
ref

coc lin

lin

fish

coc

fish

ref

sun

ref

sun

lin

coc

fish

coc

ref

coc

ref

sun

fish

sun

ref

ref

lin

fish

lincoc

coc

ref

sun

fish

coc

lin fish
lin

sun

Nutrimouse: PLS

−8 −4 0 4

−4

0

4

8

XY−variate 1

X
Y

−
va

ria
te

 2 Genotype

wt

ppar

plotIndiv(MyResult.pls, group=nutrimouse$diet,

pch = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Diet', legend.title.pch = 'Genotype',

ind.names = FALSE,

title = 'Nutrimouse: PLS')

Nutrimouse: PLS

−8 −4 0 4

−4

0

4

8

XY−variate 1

X
Y

−
va

ria
te

 2

Diet

coc

fish

lin

ref

sun

Genotype

ppar

wt

25

Introduction to PCA and PLS

3.7.4 Customize variable plots

See (example(plotVar)) for more examples. Here we change the size of the labels. By default
the colours are assigned to each type of variable. The coordinates of the variables can also be
saved as follows:
plotVar(MyResult.pls, cex=c(3,2), legend = TRUE)

X36b4

ACAT1
ACAT2

ACBP

ACC1

ACC2

ACOTH

ADISP

ADSS1

ALDH3

AM2R

AOX

BACT

BIEN

BSEP

Bcl.3

C16SR

CACP

CAR1

CBS

CIDEA
COX1

COX2

CPT2

CYP24

CYP26

CYP27a1

CYP27b1
CYP2b10
CYP2b13

CYP2c29

CYP3A11
CYP4A10

CYP4A14

CYP7a

CYP8b1

FAS

FAT

FDFT
FXR

G6PDH

G6Pase

GK

GS

GSTa

GSTmu

GSTpi2

HMGCoAred

HPNCL

IL.2

L.FABP

LCELDLr LPK

LPL
LXRa

LXRb

LpinLpin1

Lpin2

Lpin3

M.CPT1

MCAD

MDR1

MDR2
MRP6

MS
MTHFR

NGFiB

NURR1

Ntcp

OCTN2
PALPDK4

PECI

PLTP

PMDCI

PON

PPARa

PPARd
PPARgPXR

Pex11a
RARa

RARb2
RXRa

RXRb2

RXRg1

S14

SHP1

SIAT4c

SPI1.1

SR.BI

THB

THIOL

TRa

TRb

Tpalpha

Tpbeta

UCP2
UCP3

VDR

VLDLr

Waf1

ap2

apoA.I

apoB

apoC3

apoE

c.fos

cHMGCoAS

cMOAT

eif2g

hABC1

i.BABP

i.BAT

i.FABP

i.NOS

mABC1

mHMGCoAS

C14.0

C16.0

C18.0

C16.1n.9

C16.1n.7

C18.1n.9

C18.1n.7

C20.1n.9

C20.3n.9

C18.2n.6

C18.3n.6

C20.2n.6

C20.3n.6

C20.4n.6

C22.4n.6

C22.5n.6

C18.3n.3

C20.3n.3

C20.5n.3

C22.5n.3

C22.6n.3

Correlation Circle Plot

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2 Block

X

Y

coordinates <- plotVar(MyResult.pls, plot = FALSE)

In this example, the figure is difficult to interpret and we would prefer to use a sparse vesrion
of PLS to selecet the most important variable.
A cut-off can be set to display only the variables that mostly contribute to the definition of
each component. Those variables should be located towards the circle of radius 1, far from
the centre.
plotVar(MyResult.pls, cutoff=0.5)

26

Introduction to PCA and PLS

ACAT1

ACBP

ACC1
ACC2

ACOTH

ADISP
ADSS1

ALDH3

AM2R

AOX

BACT

BIEN
BSEP

Bcl.3

C16SR

CACP

CAR1

CBS

CIDEA
COX1

COX2

CPT2

CYP24

CYP26

CYP27a1

CYP27b1CYP2b10
CYP2b13

CYP3A11
CYP4A10

CYP4A14

CYP7a

FAS

FAT

FXR
G6PDH

G6Pase

GK

GS

GSTa

GSTmu

GSTpi2

HMGCoAred

HPNCLL.FABP

LCELDLr LPK

LPL
LXRa

LXRb

Lpin2

Lpin3

M.CPT1
MCAD

MDR1

MDR2MRP6

MS
MTHFR

NGFiB
NURR1

Ntcp

OCTN2
PALPDK4

PECI

PLTP

PMDCI

PON

PPARa
PPARgPXR
RARa

RARb2
RXRa
RXRb2

RXRg1SHP1

SIAT4c

SPI1.1

SR.BI

THIOL

TRa

TRb

Tpalpha
Tpbeta

UCP2
UCP3

VDR

VLDLr
Waf1

ap2

apoA.I

apoC3

apoE

c.fos

cHMGCoAS

cMOAT

eif2g

hABC1

i.BABP

i.BAT

i.FABP
i.NOS

mABC1

mHMGCoAS
C16.0

C18.0

C16.1n.9

C18.1n.9

C20.1n.9C18.2n.6C20.2n.6

C20.3n.6

Correlation Circle Plot

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2

In this particular case, no variable selection was performed. Only the display was altered to
show a subset of variables.

3.7.5 Variable Importance in the Projection (VIP)

Variable importance in projection (VIP) coefficients reflect the relative importance of each
X variable for each X variate in the prediction model. VIP coefficients thus represent the
importance of each X variable in fitting both the X- and Y-variates, since the Y-variates are
predicted from the X-variates.
my.vip <- sort(vip(MyResult.pls)[,1],decreasing = TRUE)

barplot(my.vip[1:50],

beside = FALSE,

ylim = c(0, max(my.vip)), legend = rownames(my.vip)[1:50],

main = "Variable Importance in the Projection", font.main = 4)

SR.BI PMDCI VDR eif2g PON CYP4A14 SHP1 TRa LPL RXRb2

Variable Importance in the Projection

0.
0

0.
5

1.
0

1.
5

2.
0

27

Introduction to PCA and PLS

3.7.6 Loading plots

The loading plots help visualise the coefficients assigned to each selected variable on each
component:
plotLoadings(MyResult.pls, comp = 1, size.name = rel(0.5))

SR.BI
FAT

PMDCI
PDK4
VDR

SIAT4c
ACC2

CBS
ADSS1

RXRa
c.fos

CYP24
CYP2b13

RARa
NURR1

COX1
RXRb2

Lpin
G6PDH

GS
PAL

ACBP
PPARg
OCTN2

FAS
CPT2

ACAT1
PLTP
THB

PPARa
apoB

HPNCL
FDFT

Tpbeta
C16SR

BIEN
AM2R

LPK
CYP27a1

MRP6

−0.15 −0.05 0.05 0.15

Loadings on comp 1
Block 'X'

C16.1n.9

C18.0

C20.3n.6

C18.1n.9

C18.1n.7

C14.0

C16.1n.7

C22.6n.3

C20.4n.6

C16.0

C20.5n.3

C22.5n.3

C18.3n.3

C22.5n.6

C22.4n.6

C18.3n.6

C20.1n.9

C20.3n.3

C20.2n.6

C18.2n.6

C20.3n.9

−0.3 −0.1 0.0 0.1 0.2 0.3

Loadings on comp 1
Block 'Y'

3.8 Tuning parameters and numerical outputs
For PLS, we have to choose the number of components to retain ncomp.
We use the perf function and repeated k-fold cross-validation to calculate the Q2 criterion
used in the SIMCA-P software. The rule of thumbs is that a PLS component should be
included in the model if its value is ≤ 0.0975. Here we use 5-fold CV repeated 10 times (note
that we advise to use at least 50 repeats, and choose the number of folds that are appropriate
for the sample size of the data set).
We run a PLS model with a sufficient number of components first, then run perf on the
object.
MyResult.pls <- pls(X,Y, ncomp = 6)

set.seed(30) # for reproducbility

perf.pls <- perf(MyResult.pls, validation = "Mfold", folds = 5,

progressBar = FALSE, nrepeat = 10)

plot(perf.pls,criterion = 'Q2.total')

28

Introduction to PCA and PLS

1 2 3 4 5 6

−2

−1

0

Number of components

Q
to

ta
l

 2

This example seems to indicate that up to 3 components could be enough. In a small p+ q
setting we generally observe a Q2 that decreases, but that is not the case here as n << p+ q.

3.8.1 Reminder of Cross-Validation

• One idea is to split the data set into two fractions, then use one portion to fit the model
and the other to evaluate how well the estimated modelpredicted the observations in
the second portion.

• The problem with this solution is that we rarely have so much data that we can freely
part with half of it solely for the purpose of choosing tuning parameters.

• To finesse this problem, cross-validation splits the data into K folds, fits the data on
K − 1 of the folds, and evaluates risk on the fold that was left out.

3.8.2 K-fold cross validation

Let k : 1, . . . , N → 1, . . . ,K the function indicating the partition to which observation i is
allocated:

CV = 1
n

n∑
i=1

(yi − f̂−k(i)(Xi))2

where f̂−k(i) is the prediction of the subject i based on a model fitted with the k(i)th part of
the data removed.

3.8.3 M-K-fold cross validation

29

Introduction to PCA and PLS

Let k : 1, . . . , N → 1, . . . ,K the function indicating the partition to which observation i is
allocated:

CV = 1
M

∑(
1
n

n∑
i=1

(yi − f̂−k(i)(Xi))2

)
where f̂−k(i) is the prediction of the subject i based on a model fitted with the k(i)th part of
the data removed.

3.8.4 Cross-validation: Leave One Out (loo)

• Ŷi is the prediction of the i-th observation obtained with the model fitted on all the
observation.

• Ŷ
(−i)
i is the prediction of the i-th observation obtained with the model fitted on all the

observation except the i-th observation.

The cross-validation approach compares predictions Ŷ (−i)
i to observations Yi.

3.8.5 Choice of the number of latent variables H using Q2
H

Determine Ĥ by cross-validation
For each H = 1 . . . n:

1. Evaluate Ŷ Hi and Ŷ H(−i)
i

2. Evaluate Residual Sum of Squares : RSSH =
n∑
i=1

(
Yi − Ŷ Hi

)2

3. Evaluate PRediction Error Sum of Squares : PRESSH =
n∑
i=1

(
Yi − Ŷ H(−i)

i

)2

4. Evaluate Q2
H = 1− PRESSH

RSSH−1

4 Sparse Version of PCA and PLS
Both PCA and PLS approaches enable to perform dimension reduction by constructing H
latent variables which are linear combination of all variables:

Ck = u1
k ×X1 + u2

k ×X2 + . . .+ upk ×Xp, k = 1, . . . ,H

PCA and PLS do not provide a direct variable selection method.

4.1 Sparse Version
• sparse model select the relevant predictors
• Some coefficients ulk are equal to 0

Ck = u1
k ×X1 + u2

k︸︷︷︸
=0

×X2 + u3
k︸︷︷︸

=0

×X3 + . . .+ upk ×Xp

30

Introduction to PCA and PLS

• Both sparse PCA and sparse PLS components are linear combinations of the selected
variables

→ use SVD and low rank approximation to include penalization on the loading vector.

4.2 Intuition of sparse PCA and sparse PLS

4.2.1 SVD properties

Eckart-Young (1936) states that the (truncated) SVD of a given matrixM (of rank r) provides
the best reconstitution (in a least squares sense) of M by a matrix with a lower rank k:

min
A of rank k

‖M −A‖2
F =

∥∥∥∥∥M −
k∑
`=1

δ`u`v
T
`

∥∥∥∥∥
2

F

=
r∑

`=k+1
δ2
` .

If the minimum is searched for matrices A of rank 1, which are under the form ũṽT where ũ,
ṽ are non-zero vectors, we obtain

min
ũ,ṽ

∥∥M − ũṽT∥∥2
F

=
r∑
`=2

δ2
` =

∥∥M − δ1u1v
T
1
∥∥2
F
.

Thus, solving

argmin
ũ,ṽ

∥∥Mh−1 − ũṽT
∥∥2
F

and norming the resulting vectors gives us u1 and v1. This is another approach to solve the
PLS optimization problem.

4.2.2 Towards sparse PLS

• Shen and Huang (2008) connected the previous optimization problem (in a PCA context)
to least square minimisation in regression:

∥∥Mh−1 − ũṽT
∥∥2
F

=

∥∥∥∥∥∥∥vec(Mh−1)︸ ︷︷ ︸
y

− (Ip ⊗ ũ)ṽ︸ ︷︷ ︸
Xβ

∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥vec(Mh−1)︸ ︷︷ ︸
y

− (v ⊗ Iq)ũ︸ ︷︷ ︸
Xβ

∥∥∥∥∥∥∥
2

2

.

↪→ Possible to use many existing variable selection techniques using regularization
penalties.

We propose iterative alternating algorithms to find normed vectors ũ/‖ũ‖ and ṽ/‖ṽ‖ that
minimise the following penalised sum-of-squares criterion∥∥Mh−1 − ũṽT

∥∥2
F

+ Pλ(ũ, ṽ),

for various penalization terms Pλ(ũ, ṽ).
↪→ We can obtain several sparse versions (in terms of the weights u and v).

31

Introduction to PCA and PLS

4.3 Example sparse PLS
Sparse PLS solves:

min
uh,vh

||Mh − uhvTh ||2F + λh1

P∑
i=1

2|ui|+ λh2

Q∑
i=1

2|vi|, h = 1 . . . H

4.4 Choice of the sparsity: λh1 and λh2
• k-fold cross validation or leave-one-out
↪→ RMSEP=Root Mean Squared Error Prediction

• For small samples (e.g n ≤ 100) estimated prediction error might be biased
↪→ arbitrary choose the number of non-zero components in each loading vector uh and
vh.

the biologist will also help choosing these parameters!

4.5 Sparse PLS in action

MyResult.spls <- spls(X,Y, keepX = c(25, 25), keepY = c(5,5))

plotIndiv(MyResult.spls)

plotVar(MyResult.spls)

If you were to run spls with this minimal code, you would be using the following default
values:

• ncomp = 2: the first two PLS components are calculated and are used for graphical
outputs;

• scale = TRUE: data are scaled (variance = 1, strongly advised here);
• mode = "regression": by default a PLS regression mode should be used

4.5.1 Customize sample plots

plotIndiv(MyResult.spls, group = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Genotype',

ind.names = nutrimouse$diet,

title = 'Nutrimouse: sPLS')

32

Introduction to PCA and PLS

lin
sun

sun

fish

ref

coc

lin

lin

fish

coc

fish

ref

sun

ref

sun

lin

coc

fish

coc

ref

coc

ref

sun

fish

sun

ref

ref lin

fish

lin

coc

coc

ref

sun
fish

coc

lin

fish

lin

sun

Nutrimouse: sPLS

−4 −2 0 2

−4

−2

0

2

4

6

XY−variate 1

X
Y

−
va

ria
te

 2 Genotype

wt

ppar

plotIndiv(MyResult.spls, group=nutrimouse$diet,

pch = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Diet', legend.title.pch = 'Genotype',

ind.names = FALSE,

title = 'Nutrimouse: sPLS')

Nutrimouse: sPLS

−4 −2 0 2

−4

−2

0

2

4

6

XY−variate 1

X
Y

−
va

ria
te

 2

Diet

coc

fish

lin

ref

sun

Genotype

ppar

wt

4.5.2 Customize variable plots

plotVar(MyResult.spls, cex=c(3,2), legend = TRUE)

33

Introduction to PCA and PLS

ACBP
ACC2

ACOTH

ALDH3
AOX

BIEN

BSEP
CACP

CAR1

CBS

CPT2CYP27a1

CYP3A11

CYP4A10
CYP4A14FAS

FAT

GK
GSTa

GSTpi2

HPNCL
L.FABP

Lpin2

MCAD

MDR2

MS

Ntcp

PDK4

PECI
PLTP

PMDCI

RXRa
RXRg1SHP1

SIAT4c

SPI1.1

SR.BI

THIOLTpalphaTpbeta

UCP2

VDR
Waf1apoC3

cHMGCoAS

cMOAT

eif2g

mHMGCoAS

C16.0

C18.0

C16.1n.9

C18.1n.9

C18.1n.7

C20.1n.9

C18.2n.6

C20.2n.6

C20.3n.6

C22.6n.3

Correlation Circle Plot

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2 Block

X

Y

coordinates <- plotVar(MyResult.spls, plot = FALSE)

4.5.3 Variable selection outputs

The selected variables can be extracted using the selectVar function for further analysis.
MySelectedVariables <- selectVar(MyResult.spls, comp = 1)

MySelectedVariablesXname # Selected genes on component 1

[1] "SR.BI" "SPI1.1" "PMDCI" "CYP3A11" "Ntcp" "GSTpi2" "FAT"

[8] "apoC3" "UCP2" "CAR1" "Waf1" "ACOTH" "eif2g" "PDK4"

[15] "CYP4A10" "VDR" "SIAT4c" "RXRg1" "RXRa" "CBS" "SHP1"

[22] "MCAD" "MS" "CYP4A14" "ALDH3"

MySelectedVariablesYname # Selected lipids on component 1

[1] "C18.0" "C16.1n.9" "C18.1n.9" "C20.3n.6" "C22.6n.3"

The loading plots help visualise the coefficients assigned to each selected variable on each
component:
plotLoadings(MyResult.spls, comp = 1, size.name = rel(0.5))

34

Introduction to PCA and PLS

SR.BI

SPI1.1

PMDCI

CYP3A11

Ntcp

GSTpi2

FAT

apoC3

UCP2

CAR1

Waf1

ACOTH

eif2g

PDK4

CYP4A10

VDR

SIAT4c

RXRg1

RXRa

CBS

SHP1

MCAD

MS

CYP4A14

ALDH3

−0.3 −0.1 0.0 0.1 0.2 0.3

Loadings on comp 1
Block 'X'

C18.0

C16.1n.9

C18.1n.9

C20.3n.6

C22.6n.3

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Loadings on comp 1
Block 'Y'

4.5.4 Tuning parameter and numerical outputs

The number of variables to select on each component and on each data set keepX and keepY

have to be chosen.
These tuning parameters can be quite difficult to tune. Here is a minimal example where
we only tune keepX based on the Mean Absolute Value. Other measures proposed are Mean
Square Error, Bias and R2 (see ?tune.spls):
list.keepX <- c(2:10, 15, 20)

tuning based on MAE

set.seed(30) # for reproducbility in this vignette, otherwise increase nrepeat

tune.spls.RSS <- tune.spls(X, Y, ncomp = 3,

test.keepX = list.keepX,

validation = "Mfold", folds = 5,

nrepeat = 10, progressBar = FALSE,

measure = 'RSS')

Warning: The SGCCA algorithm did not converge

plot(tune.spls.RSS, legend.position = 'topright')

35

Introduction to PCA and PLS

5

10

5 10 15 20

keepX

R
S

S

comp 1
comp 2
comp 3

measure = 'RSS'

Based on the lowest RSS obtained on each component, the optimal number of variables to
select in the X data set, including all variables in the Y data set would be:
tune.spls.RSS$choice.keepX

comp1 comp2 comp3

2 2 2

To Tune keepX and keepY conjointly, one can tune one parameter then the other.

4.5.5 Clustered Image Maps

A clustered image map can be produced using the cim function. You may experience figures
margin issues in RStudio. Best is to either use X11() or save the plot as an external file.
For example to show the correlation structure between the X and Y variables selected on
component 1:
X11()

cim(MyResult.spls, comp = 1)

cim(MyResult.spls, comp = 1, save = 'jpeg', name.save = 'PLScim')

4.5.6 Relevance networks

Using the same similarity matrix input in CIM, we can also represent relevance bipartite
networks. Those networks only represent edges between on type of variable from X and the
other type of variable, from Y. Whilst we use sPLS to narrow down to a few key correlated
variables, our keepX and keepY values might still be very high for this kind of output. A
cut-off can be set based on the correlation coefficient between the different types of variables.
Other arguments such as interactive = TRUE enables a scrollbar to change the cut-off value
interactively, see other options in ?network. Additionally, the graph object can be saved to be
input into Cytoscape for an improved visualisation.
X11()

network(MyResult.spls, comp = 1)

36

Introduction to PCA and PLS

network(MyResult.spls, comp = 1, cutoff = 0.6, save = 'jpeg', name.save = 'PLSnetwork')

save as graph object for cytoscape

myNetwork <- network(MyResult.spls, comp = 1)$gR

4.6 Sparse PCA in action
I would like to apply PCA but also be able to identify the key variables that contribute to the
explanation of most variance in the data set.

The user needs to provide the number of variables to select on each PC. Here for example
we ask to select the top 15 genes contributing to the definition of PC1, the top 10 genes
contributing to PC2 and the top 5 genes for PC3 (keepX=c(15,10,5)).
data(liver.toxicity)

X <- liver.toxicity$gene

MyResult.spca <- mixOmics::spca(X, ncomp = 3, keepX = c(15,10,5)) # 1 Run the method

plotIndiv(MyResult.spca, group = liver.toxicity$treatment$Dose.Group, # 2 Plot the samples

pch = as.factor(liver.toxicity$treatment$Time.Group),

legend = TRUE, title = 'Liver toxicity: genes, sPCA comp 1 - 2',

legend.title = 'Dose', legend.title.pch = 'Exposure')

Liver toxicity: genes, sPCA comp 1 − 2

−8 −4 0 4

−2.5

0.0

2.5

5.0

PC1: 23% expl. var

P
C

2:
 1

7%
 e

xp
l.

va
r

Dose

150

1500

2000

50

Exposure

18

24

48

6

plotVar(MyResult.spca, cex = 1) # 3 Plot the variables

37

Introduction to PCA and PLS

A_43_P20891

A_43_P23061

A_43_P22469

A_43_P21243

A_43_P14037

A_43_P21269

A_43_P15845

A_43_P11409A_43_P16829

A_43_P20475

A_42_P680505

A_43_P20281
A_42_P814129

A_43_P21483
A_42_P751969

A_42_P620095
A_42_P761756

A_42_P708480
A_42_P795796

A_42_P470649
A_43_P12751

A_43_P13317

A_43_P22616
A_42_P545943A_42_P765066

Correlation Circle Plot

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2

cex is used to reduce the size of the labels on the plot

Selected variables can be identified on each component with the selectVar function. Here
the coefficient values are extracted, but there are other outputs, see ?selectVar:
selectVar(MyResult.spca, comp = 1)$value

value.var

A_43_P20281 -0.39077443

A_43_P16829 -0.38898291

A_43_P21269 -0.37452039

A_43_P20475 -0.32482960

A_43_P20891 -0.31740002

A_43_P14037 -0.27681845

A_42_P751969 -0.26140533

A_43_P15845 -0.22392912

A_42_P814129 -0.18838954

A_42_P680505 -0.18672610

A_43_P21483 -0.16202222

A_43_P21243 -0.13259471

A_43_P22469 -0.12493156

A_43_P23061 -0.12255308

A_43_P11409 -0.09768656

Those values correspond to the loading weights that are used to define each component. A
large absolute value indicates the importance of the variable in this PC. Selected variables are
ranked from the most important (top) to the least important.
We can complement this output with plotLoadings. We can see here that all coefficients are
negative.
plotLoadings(MyResult.spca)

38

Introduction to PCA and PLS

A_43_P20281

A_43_P16829

A_43_P21269

A_43_P20475

A_43_P20891

A_43_P14037

A_42_P751969

A_43_P15845

A_42_P814129

A_42_P680505

A_43_P21483

A_43_P21243

A_43_P22469

A_43_P23061

A_43_P11409

−0.3 −0.2 −0.1 0.0

Loadings on comp 1

If we look at component two, we can see a mix of positive and negative weights (also see in
the plotVar), those correspond to variables that oppose the low and high doses (see from the
‘plotIndiv):
selectVar(MyResult.spca, comp=2)$value

plotLoadings(MyResult.spca, comp = 2)

A_42_P470649

A_42_P795796

A_42_P761756

A_43_P12751

A_42_P765066

A_42_P708480

A_42_P545943

A_42_P620095

A_43_P22616

A_43_P13317

−0.4 −0.2 0.0 0.2

Loadings on comp 2

4.7 Tuning parameters
For this set of methods, two parameters need to be chosen:

• The number of components to retain,
• The number of variables to select on each component for sparse PCA.

39

Introduction to PCA and PLS

The function tune.pca calculates the percentage of variance explained for each component,
up to the minimum between the number of rows, or column in the data set. The ‘optimal’
number of components can be identified if an elbow appears on the screeplot. In the example
below the cut-off is not very clear, we could choose 2 components.

1 4 7 10 14 18 22 26 30 34 38 42 46 50 54 58 62

Principal Components

E
xp

la
in

ed
 V

ar
ia

nc
e

0.
00

0.
10

0.
20

0.
30

Regarding the number of variables to select in sparse PCA, there is not clear criterion at
this stage. As PCA is an exploration method, we prefer to set arbitrary thresholds that will
pinpoint the key variables to focus on during the interpretation stage.

4.8 Other implementation of Sparse PCA
The R package elasticnet (Zou and Hastie 2018) provides the spca function to perform a
sparse PCA model.
library(elasticnet)

However, the package does not provide a function to choose the number of variables in each
component.
The R package PMA ((Witten et al. 2019)) provides a way to tune the number of variables in
each component. You can explore the function SPC.cv for it.
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("impute", version = "3.8")

library(PMA)

?SPC.cv

40

Introduction to PCA and PLS

5 PLS - Discriminant Analysis (PLS-DA) and Sparse
PLS-DA

PLSDA overview

PLS−DA

Quantitative

Qualitative

5.1 Biological question
I am analysing a single data set (e.g. transcriptomics data) and I would like to classify my
samples into known groups and predict the class of new samples. In addition, I am interested
in identifying the key variables that drive such discrimination.

5.2 The srbct study
The data are directly available in a processed and normalised format from the mixOmics

package. The Small Round Blue Cell Tumours (SRBCT) dataset from (Khan et al. 2001)
includes the expression levels of 2,308 genes measured on 63 samples. The samples are
classified into four classes as follows: 8 Burkitt Lymphoma (BL), 23 Ewing Sarcoma (EWS),
12 neuroblastoma (NB), and 20 rhabdomyosarcoma (RMS).
The srbct dataset contains the following:
$gene: a data frame with 63 rows and 2308 columns. The expression levels of 2,308 genes in
63 subjects.
$class: a class vector containing the class tumour of each individual (4 classes in total).
$gene.name: a data frame with 2,308 rows and 2 columns containing further information on
the genes.
More details can be found in ?srbct.
To illustrate PLS-DA, we will analyse the gene expression levels of srbct$gene to discriminate
the 4 groups of tumours.

41

Introduction to PCA and PLS

5.3 Principle of sparse PLS-DA
Although Partial Least Squares was not originally designed for classification and discrimination
problems, it has often been used for that purpose (Nguyen and Rocke 2002; Tan et al. 2004).
The response matrix Y is qualitative and is internally recoded as a dummy block matrix that
records the membership of each observation, i.e. each of the response categories are coded
via an indicator variable.
The PLS regression (now PLS-DA) is then run as if Y was a continuous matrix. This PLS
classification trick works well in practice, as demonstrated in many references (Barker and
Rayens 2003; Nguyen and Rocke 2002; Boulesteix and Strimmer 2007; Chung and Keles
2010).
Sparse PLS-DA performs variable selection and classification in a one step procedure. sPLS-DA
is a special case of sparse PLS described previously, where `1 penalization is applied on the
loading vectors associated to the X data set.
We will mainly focus on sparse PLS-DA (see Lê Cao, Boitard, and Besse (2011)) that is
more suited for large biological data sets where the aim is to identify molecular signatures,
as well as classifying samples. We first set up the data as X expression matrix and Y as a
factor indicating the class membership of each sample. We also check that the dimensions
are correct and match:
library(mixOmics)

data(srbct)

X <- srbct$gene

Y <- srbct$class

summary(Y)

EWS BL NB RMS

23 8 12 20

dim(X); length(Y)

[1] 63 2308

[1] 63

5.3.1 Quick start

For a quick start we arbitrarily set the number of variables to select to 50 on each of the 3
components of PLS-DA.
MyResult.splsda <- splsda(X, Y, keepX = c(50,50)) # 1 Run the method

plotIndiv(MyResult.splsda) # 2 Plot the samples

plotVar(MyResult.splsda) # 3 Plot the variables

selectVar(MyResult.splsda, comp=1)$name # Selected variables on component 1

As PLS-DA is a supervised method, the sample plot automatically displays the group mem-
bership of each sample. We can observe a clear discrimination between the BL samples and
the others on the first component (x-axis), and EWS vs the others on the second component
(y-axis). Remember that this discrimination spanned by the first two PLS-DA components is
obtained based on a subset of 100 variables (50 selected on each component).
From the plotIndiv the axis labels indicate the amount of variation explained per component.
Note that the interpretation of this amount is not the same as in PCA. In PLS-DA, the aim
is to maximise the covariance between X and Y, not only the variance of X as it is the case in
PCA!

42

Introduction to PCA and PLS

PLS-DA without variable selection can be performed as:
MyResult.plsda <- plsda(X,Y) # 1 Run the method

plotIndiv(MyResult.plsda) # 2 Plot the samples

plotVar(MyResult.plsda) # 3 Plot the variables

5.4 To go further

5.4.1 Customize sample plots

The sample plots can be improved in various ways. First, if the names of the samples are
not meaningful at this stage, they can be replaced by symbols (ind.names=TRUE). Confidence
ellipses can be plotted for each sample (ellipse = TRUE, confidence level set to 95% by
default, see the argument ellipse.level), Additionally, a star plot displays arrows from each
group centroid towards each individual sample (star = TRUE). A 3D plot is also available,
see plotIndiv for more details.
plotIndiv(MyResult.splsda, ind.names = FALSE, legend=TRUE,

ellipse = TRUE, star = TRUE, title = 'sPLS-DA on SRBCT',

X.label = 'PLS-DA 1', Y.label = 'PLS-DA 2')

sPLS−DA on SRBCT

0 5 10 15

−5

0

5

PLS−DA 1

P
LS

−
D

A
 2

Legend

EWS

BL

NB

RMS

5.4.2 Customize variable plots

The name of the variables can be set to FALSE (var.names=FALSE):
plotVar(MyResult.splsda, var.names=FALSE)

43

Introduction to PCA and PLS

Correlation Circle Plot

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2

In addition, if we had used the non sparse version of PLS-DA, a cut-off can be set to display
only the variables that mostly contribute to the definition of each component. Those variables
should be located towards the circle of radius 1, far from the centre.
plotVar(MyResult.plsda, cutoff=0.7)

g1

g571

g719

g812

g875g906

g937g1007

g1067

g1082

g1167

g1194 g1888

g1894

g1932

g2253

g2276

Correlation Circle Plot

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component 1

C
om

po
ne

nt
 2

In this particular case, no variable selection was performed. Only the display was altered to
show a subset of variables.

5.4.3 Other useful plots

5.4.3.1 ROC As PLS-DA acts as a classifier, we can plot a ROC Curve to complement
the sPLS-DA classification performance results detailed latter. The AUC is calculated from
training cross-validation sets and averaged.

44

Introduction to PCA and PLS

auc.plsda <- auroc(MyResult.splsda)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
100 − Specificity (%)

S
en

si
tiv

ity
 (

%
)

Outcome

BL vs Other(s): 1

EWS vs Other(s): 1

NB vs Other(s): 0.7549

RMS vs Other(s): 0.8953

ROC Curve Using Comp(s): 1, 2

5.4.4 Variable selection outputs

First, note that the number of variables to select on each component does not need to be
identical on each component, for example:
MyResult.splsda2 <- splsda(X,Y, ncomp=3, keepX=c(15,10,5))

Selected variables are listed in the selectVar function:
selectVar(MyResult.splsda2, comp=1)$value

value.var

g123 0.53516982

g846 0.41271455

g335 0.30309695

g1606 0.30194141

g836 0.29365241

g783 0.26329876

g758 0.25826903

g1386 0.23702577

g1158 0.15283961

g585 0.13838913

g589 0.12738682

g1387 0.12202390

g1884 0.08458869

g1295 0.03150351

g1036 0.00224886

and can be visualised in plotLoadings with the arguments contrib = 'max' that is going to
assign to each variable bar the sample group colour for which the mean (method = 'mean') is
maximum. See example(plotLoadings) for other options (e.g. min, median)

45

Introduction to PCA and PLS

plotLoadings(MyResult.splsda2, contrib = 'max', method = 'mean')

g123

g846

g335

g1606

g836

g783

g758

g1386

g1158

g585

g589

g1387

g1884

g1295

g1036

0.0 0.1 0.2 0.3 0.4 0.5

Contribution on comp 1

Outcome

EWS
BL
NB
RMS

Interestingly from this plot, we can see that all selected variables on component 1 are highly
expressed in the BL (orange) class. Setting contrib = 'min' would highlight that those
variables are lowly expressed in the NB grey class, which makes sense when we look at the
sample plot.
Since 4 classes are being discriminated here, samples plots in 3d may help interpretation:
plotIndiv(MyResult.splsda2, style="3d")

5.4.5 Tuning parameters and numerical outputs

For this set of methods, three parameters need to be chosen:
1 - The number of components to retain ncomp. The rule of thumb is usually K − 1 where K
is the number of classes, but it is worth testing a few extra components.
2 - The number of variables keepX to select on each component for sparse PLS-DA,
3 - The prediction distance to evaluate the classification and prediction performance of
PLS-DA.
For item 1, the perf evaluates the performance of PLS-DA for a large number of components,
using repeated k-fold cross-validation. For example here we use 3-fold CV repeated 10 times
(note that we advise to use at least 50 repeats, and choose the number of folds that are
appropriate for the sample size of the data set):
MyResult.plsda2 <- plsda(X,Y, ncomp=10)

set.seed(30) # for reproducibility in this vignette, otherwise increase nrepeat

MyPerf.plsda <- perf(MyResult.plsda2, validation = "Mfold", folds = 3,

progressBar = FALSE, nrepeat = 10) # we suggest nrepeat = 50

46

Introduction to PCA and PLS

type attributes(MyPerf.plsda) to see the different outputs

slight bug in the output function currently see the quick fix below

#plot(MyPerf.plsda, col = color.mixo(5:7), sd = TRUE, legend.position = "horizontal")

quick fix

matplot(MyPerf.plsda$error.rate$BER, type = 'l', lty = 1,

col = color.mixo(1:3),

main = 'Balanced Error rate')

legend('topright',

c('max.dist', 'centroids.dist', 'mahalanobis.dist'),

lty = 1,

col = color.mixo(5:7))

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Balanced Error rate

M
yP

er
f.p

ls
da

$e
rr

or
.r

at
e$

B
E

R

max.dist
centroids.dist
mahalanobis.dist

The plot outputs the classification error rate, or Balanced classification error rate when
the number of samples per group is unbalanced, the standard deviation according to three
prediction distances. Here we can see that for the BER and the maximum distance, the best
performance (i.e. low error rate) seems to be achieved for ncomp = 3.
In addition (item 3 for PLS-DA), the numerical outputs listed here can be reported as
performance measures:
MyPerf.plsda

##

Call:

perf.mixo_plsda(object = MyResult.plsda2, validation = "Mfold", folds = 3, nrepeat = 10, progressBar = FALSE)

##

Main numerical outputs:

Error rate (overall or BER) for each component and for each distance: see object$error.rate

Error rate per class, for each component and for each distance: see object$error.rate.class

Prediction values for each component: see object$predict

Classification of each sample, for each component and for each distance: see object$class

AUC values: see object$auc if auc = TRUE

##

Visualisation Functions:

47

Introduction to PCA and PLS

plot

Regarding item 2, we now use tune.splsda to assess the optimal number of variables to
select on each component. We first set up a grid of keepX values that will be assessed on
each component, one component at a time. Similar to above we run 3-fold CV repeated 10
times with a maximum distance prediction defined as above.
list.keepX <- c(5:10, seq(20, 100, 10))

list.keepX # to output the grid of values tested

[1] 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

set.seed(30) # for reproducbility in this vignette, otherwise increase nrepeat

tune.splsda.srbct <- tune.splsda(X, Y, ncomp = 3, # we suggest to push ncomp a bit more, e.g. 4

validation = 'Mfold',

folds = 3, dist = 'max.dist', progressBar = FALSE,

measure = "BER", test.keepX = list.keepX,

nrepeat = 10) # we suggest nrepeat = 50

We can then extract the classification error rate averaged across all folds and repeats for each
tested keepX value, the optimal number of components (see ?tune.splsda for more details),
the optimal number of variables to select per component which is summarised in a plot where
the diamond indicated the optimal keepX value:
error <- tune.splsda.srbct$error.rate

ncomp <- tune.splsda.srbct$choice.ncomp$ncomp # optimal number of components based on t-tests on the error rate

ncomp

[1] 3

select.keepX <- tune.splsda.srbct$choice.keepX[1:ncomp] # optimal number of variables to select

select.keepX

comp1 comp2 comp3

50 40 40

plot(tune.splsda.srbct, col = color.jet(ncomp))

0.0

0.2

0.4

10 30 100
Number of selected features

B
al

an
ce

d
er

ro
r

ra
te

Comp

1

1 to 2

1 to 3

Based on those tuning results, we can run our final and tuned sPLS-DA model:

48

Introduction to PCA and PLS

MyResult.splsda.final <- splsda(X, Y, ncomp = ncomp, keepX = select.keepX)

plotIndiv(MyResult.splsda.final, ind.names = FALSE, legend=TRUE,

ellipse = TRUE, title="SPLS-DA, Final result")

Additionally we can run perf for the final performance of the sPLS-DA model. Also note
that perf will output features that lists the frequency of selection of the variables across the
different folds and different repeats. This is a useful output to assess the confidence of your
final variable selection, see a more detailed example here.

6 Extension of Sparse PLS
The two following extenstions of Sparse PLS have been introduced by Liquet et al. (2015).

6.1 Incorporating Group structures within the data
• Natural example: Categorical variables which is a group of dummies variables in a

regression setting.
• Genomics: genes within the same pathway have similar functions and act together in

regulating a biological system.
↪→ These genes can add up to have a larger effect
↪→ can be detected as a group (i.e., at a pathway or gene set/module level).
We consider variables are divided into groups:

• {Example p: SNPs grouped into K genes} {

X = [SNP1, . . . + SNPk︸ ︷︷ ︸
gene1

| SNPk+1, SNPk+2, . . . , SNPh︸ ︷︷ ︸
gene2

| . . . | SNPl+1, . . . , SNPp︸ ︷︷ ︸
geneK

]

}

• Example p: genes grouped into K pathways/modules (Xj = genej)

X = [X1, X2, . . . , Xk︸ ︷︷ ︸
M1

| Xk+1, Xk+2, . . . , Xh︸ ︷︷ ︸
M2

| . . . | Xl+1, Xl+2, . . . , Xp︸ ︷︷ ︸
MK

]

6.2 Aims in regression setting:

• Select group variables taking into account the data structures; all the variables within a
group are selected otherwise none of them are selected

• Combine both sparsity of groups and within each group; only relevant variables within a
group are selected

49

http://mixomics.org/case-studies/splsda-srbct/

Introduction to PCA and PLS

6.3 Sparse Models
To understand the different sparse model, we consider here that genes (variables) are grouped
into modules (pathways).
Aim: Select gene expressions.

• sparse PLS

ξ = u1 ×X1 + 0×X2 + u3 ×X3 + · · ·+ up ×Xp

Aim: Select groups of gene expressions.
• group PLS

ξ = u1 ×X1 + u2 ×X2︸ ︷︷ ︸
Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k

Aim: Select group and within-group gene expressions.
• sparse group PLS

ξ = u1 ×X1 + 0×X2︸ ︷︷ ︸
Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k

6.4 Optimisation functions

6.4.1 Sparse PLS: sPLS

Optimisation of the weights
• X-score ξ = Xu, Y-score ω = Yv

argmax
vᵀ

h
vh≤1,uᵀ

h
uh≤1

Cov(Xu,Yv)− λ1‖u‖1

• Sparse PLS

ξ = u1 ×X1 + 0×X2 + u3 ×X3 + · · ·+ up ×Xp

6.4.2 Sparse group PLS: gPLS

Optimisation of the weights
• X-score ξ = Xu, Y-score ω = Yv

argmax
vᵀ

h
vh≤1,uᵀ

h
uh≤1

Cov(Xu,Yv)− λ2

K∑
k=1

‖u(k)‖2

• Group PLS

ξ = 0×X1 + 0×X2︸ ︷︷ ︸
Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k

50

Introduction to PCA and PLS

6.4.3 Sparse Group PLS: sgPLS

Optimisation of the weights
• X-score ξ = Xu, Y-score ω = Yv

argmax
vᵀ

h
vh≤1,uᵀ

h
uh≤1

Cov(Xu,Yv)− λ1‖u‖1 − λ2

K∑
k=1

‖u(k)‖2

• Sparse Group PLS
ξ = u1 ×X1 + 0×X2︸ ︷︷ ︸

Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k

6.5 sparse group subgroup PLS
Taking into account one more layer in the group structure:

• Example: SNP ⊂ Gene ⊂ Pathways
• Longitudinal study

6.5.1 Longitudinal group structures:

This extension to longitudinal group structures has been developped by Sutton, Thiébaut, and
Liquet (2018).

• Time index: genes within the same pathway at the same time index have similar
functions in regulating a biological system.2

G1 = [gene1, . . . , genek
G1T1

| gene1, . . . , genek
G1T2

]

X = [G1T1, G1T2
G1

| G2T1, G2T2
G2

| · · · | G4T1, G4T2
G4

]

51

Introduction to PCA and PLS

6.5.2 Aims:

• Identify important modules at a group level, important times at a subgroup level and
single genes at an individual level.

6.5.3 sparse group subgroup PLS: sgsPLS

ξ =
Time 1︷ ︸︸ ︷

0×X1 + 0×X2 +
Time 2︷ ︸︸ ︷

0×X1 + 0×X2︸ ︷︷ ︸
Module 1

+ · · ·

+
Time 1︷ ︸︸ ︷

up−1 ×Xp−1 + 0×Xp +
Time 2︷ ︸︸ ︷

0×Xp−1 + 0×Xp︸ ︷︷ ︸
Module k

Optimisation of the weights

• X-score ξh = Xh−1uh, Y-score ωh = Yh−1vh

max
vh, uh

Cov(Xu,Yv)− λ1

K∑
k=1

‖u(k)‖2 − λ2

K∑
k=1

Ak∑
a=1

‖u(k,a)‖2 − λ3‖u‖1

such that vThvh ≤ 1 and uThuh ≤ 1.

6.6 R Package
sgPLS ~ available on CRAN see Liquet, de Micheaux, and Broc (2017)
library(sgPLS)

example("gPLS")

sgsPLS Available now on GITHUB https://github.com/matt-sutton/sgspls
library(devtools)

install_github("matt-sutton/sgspls")

6.7 Big sgPLS
bigsgPLS is an R package that provides an implementation of the two block PLS methods.
The method makes use of bigmemory and matrix algebra by chunks to deal with datasets too
large for R.

52

https://github.com/matt-sutton/sgspls

Introduction to PCA and PLS

A preliminary paper describing the PLS methods and some of the statistical properties
is avaliable on ArXiv Pre-prints (Lafaye de Micheaux, Liquet, and Sutton 2017) https:
//arxiv.org/abs/1702.07066
library(devtools)

install_github("matt-sutton/bigsgPLS", host = "https://api.github.com")

An example of PLS on the EMNIST dataset is provided here https://github.com/matt-sutton/
bigsgPLS/blob/master/Examples/Example-3-PLS.md

References
10 Barker, Matthew, and William Rayens. 2003. “Partial Least Squares for Discrimination.”
Journal of Chemometrics 17 (3): 166–73.
Boulesteix, A. L., and K. Strimmer. 2007. “Partial least squares: a versatile tool for the
analysis of high-dimensional genomic data.” Briefings in Bioinformatics 8 (1): 32.
Chung, D., and S. Keles. 2010. “Sparse Partial Least Squares Classification for High
Dimensional Data.” Statistical Applications in Genetics and Molecular Biology 9 (1): 17.
Jolliffe, Ian. 2005. Principal Component Analysis. Wiley Online Library.
Khan, Javed, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank Westermann,
Frank Berthold, et al. 2001. “Classification and Diagnostic Prediction of Cancers Using Gene
Expression Profiling and Artificial Neural Networks.” Nature Medicine 7 (6): 673–79.
Lafaye de Micheaux, Pierre, Benoit Liquet, and Matthew Sutton. 2017. “A Unified Parallel
Algorithm for Regularized Group PLS Scalable to Big Data.” arXiv Preprint arXiv:1702.07066.
Lê Cao, Kim-Anh, Simon Boitard, and Philippe Besse. 2011. “Sparse PLS Discriminant Anal-
ysis: Biologically Relevant Feature Selection and Graphical Displays for Multiclass Problems.”
BMC Bioinformatics 12 (1): 253.
Liquet, Benoit, Pierre Lafaye de Micheaux, and Camilo Broc. 2017. sgPLS: Sparse Group
Partial Least Square Methods. https://CRAN.R-project.org/package=sgPLS.
Liquet, Benoit, Pierre Lafaye de Micheaux, Boris P Hejblum, and Rodolphe Thiébaut. 2015.
“Group and Sparse Group Partial Least Square Approaches Applied in Genomics Context.”
Bioinformatics 32 (1): 35–42.
Nguyen, D. V., and D. M. Rocke. 2002. “Tumor classification by partial least squares using
microarray gene expression data.” Bioinformatics 18 (1): 39.
Patterson, Nick, Alkes L Price, and David Reich. 2006. “Population Structure and Eigenanal-
ysis.” PLoS Genetics 2 (12): e190.
Privé, Florian, Hugues Aschard, Andrey Ziyatdinov, and Michael GB Blum. 2018. “Efficient
Analysis of Large-Scale Genome-Wide Data with Two r Packages: Bigstatsr and Bigsnpr.”
Bioinformatics 34 (16): 2781–87.
Rohart, Florian, Benoit Gautier, Amrit Singh, and Kim-Anh Le Cao. 2017. “mixOmics: An r
Package for ‘Omics Feature Selection and Multiple Data Integration.” PLoS Computational
Biology 13 (11).
Sutton, Matthew, Rodolphe Thiébaut, and Benoit Liquet. 2018. “Sparse Partial Least Squares
with Group and Subgroup Structure.” Statistics in Medicine 37 (23): 3338–56.

53

https://arxiv.org/abs/1702.07066
https://arxiv.org/abs/1702.07066
https://github.com/matt-sutton/bigsgPLS/blob/master/Examples/Example-3-PLS.md
https://github.com/matt-sutton/bigsgPLS/blob/master/Examples/Example-3-PLS.md
https://CRAN.R-project.org/package=sgPLS

Introduction to PCA and PLS

Tan, Y., L. Shi, W. Tong, GT Gene Hwang, and C. Wang. 2004. “Multi-class tumor
classification by discriminant partial least squares using microarray gene expression data and
assessment of classification models.” Computational Biology and Chemistry 28 (3): 235–43.
Witten, Daniela, Rob Tibshirani, Sam Gross, and Balasubramanian Narasimhan. 2019. PMA:
Penalized Multivariate Analysis. https://CRAN.R-project.org/package=PMA.
Zou, Hui, and Trevor Hastie. 2018. Elasticnet: Elastic-Net for Sparse Estimation and Sparse
PCA. https://CRAN.R-project.org/package=elasticnet.

54

https://CRAN.R-project.org/package=PMA
https://CRAN.R-project.org/package=elasticnet

	1 Introduction
	1.1 Data and Goals
	1.2 Example: Data definition
	1.3 Questions
	1.4 Low-Dimensional Versus High-Dimensional
	1.5 Dimension Reduction
	1.6 Supervised Learning or Unsupervised Leraning

	2 Principal Component Analysis
	2.1 Definition: Principal Component Analysis (PCA)
	2.2 PCA: The main Idea
	2.3 The Criterion for Principal Components
	2.4 The 1-Dimensional PCA Solution
	2.5 The Full PCA Solution for 2 Dimensions
	2.6 PCA: Summary
	2.7 Objective function for PCA
	2.8 Singular Value Decomposition (SVD)
	2.9 Relation of PCA and SVD
	2.10 Illustration PCA: GWAS
	2.11 SVD as a Compression/Dimension Reduction Tool
	2.12 Case Study: The liver.toxicity study

	3 Partial Least Square (PLS)
	3.1 Modelling Aims
	3.2 Objective function:
	3.3 Univariate case Y\in \Re^n
	3.4 Partial Least Squares: regression mode (multivariate case: Y (n\times q))
	3.5 Algorithm: regression mode
	3.6 PLS connected to Singular Value Decomposition (SVD)
	3.7 PLS in practice: the nutrimouse study
	3.8 Tuning parameters and numerical outputs

	4 Sparse Version of PCA and PLS
	4.1 Sparse Version
	4.2 Intuition of sparse PCA and sparse PLS
	4.3 Example sparse PLS
	4.4 Choice of the sparsity: \lambda_1^h and \lambda_2^h
	4.5 Sparse PLS in action
	4.6 Sparse PCA in action
	4.7 Tuning parameters
	4.8 Other implementation of Sparse PCA

	5 PLS - Discriminant Analysis (PLS-DA) and Sparse PLS-DA
	5.1 Biological question
	5.2 The srbct study
	5.3 Principle of sparse PLS-DA
	5.4 To go further

	6 Extension of Sparse PLS
	6.1 Incorporating Group structures within the data
	6.2 Aims in regression setting:
	6.3 Sparse Models
	6.4 Optimisation functions
	6.5 sparse group subgroup PLS
	6.6 R Package
	6.7 Big sgPLS

	References

