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Abstract

This document presents briefly the Principal Component Analyis (PCA) and the Partial Least
Square method (PLS). These popular reduction methods are presented through different case
studies using different R packages. Sparse versions which enable variable selection are also
presented.
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1 Introduction

1.1 Data and Goals
Goal of Integrative Analysis:

Wikipedia. Data integration “involves combining data residing in different sources and
providing users with a unified view of these data. This process becomes significant in a variety
of situations, which include both commercial and scientific".

System Biology. Integrative Analysis: Analysis of heterogeneous types of data from inter-
platform technologies.

Goal. Combine multiple types of data:
• Contribute to a better understanding of biological mechanism.
• Have the potential to improve the diagnosis and treatments of complex diseases.

1.2 Example: Data definition

- n observations

- p variables

X
n

- n observations

- q variables

Y
n

p q

• “Omics.” Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism).
Many others such as proteomic, metabolomic data.

• “neuroimaging”. Y matrix: behavioral variables, X matrix: brain activity (e.g., EEG,
fMRI, NIRS)

• “neuroimaging genetics.” Y matrix: fMRI (Fusion of functional magnetic resonance
imaging), X matrix: SNP

• “Ecology/Environment.” Y matrix: Water quality variables , X matrix: Landscape
variables

1.3 Questions

- n observations

- p variables

X
n

- n observations

- q variables

Y
n

p q

Some possible questions:
• How to investigate the relation of these two blocks of Data?
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• How to dentify which of the p variables in X (OMICs data) are associated with the
outcome Y (disease status or correlated continuous marker)

• Integrative Omics Analysis: Can we identify a subset of correlated genes and proteins?

1.3.1 Constraints

• The n < p situation:
• More predictors than observations

⇒ numerically intractable statistical inferences
• Data from multiple source.

1.4 Low-Dimensional Versus High-Dimensional
• The data set that you used to analyse in traditional statistics course is low-dimensional:
n >> p

• Lots of the data sets coming out of modern biological techniques are high-dimensional:
n ' p or n << p.

• This poses statistical challenges! For example Linear model no longer applies.

1.4.1 Low Dimensional

1.4.2 High Dimensional
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1.5 Dimension Reduction
Dimension Reduction methods is a popular approach to solve the high dimensional situation
(p >> n).
Dimension reduction techniques summarize X into a lower dimension matrix.

1.5.1 Why Dimension Reduction?

• Some features may be irrelevant
• We want to visualize high dimensional data
• High dimensional data often have high degrees of redundancy (correlation among

features).
Dimension Reduction enables us to:

• Map the data into a new low-dimensional space, where important characteristics of the
data are preserved.

• The new space often gives a (linear or non-linear) transformation of the original data.
• Visualization and analysis (clustering/prediction/...) is then performed in the new space.

1.6 Supervised Learning or Unsupervised Leraning

1.6.1 Supervised Learning
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1.6.2 Unsupervised Learning

• no response variable
• In biological applications, often p >> n.

1.6.3 Unsupervised Learning Examples

• Do genes/samples in microarray expression data form interesting groups?
• Can individuals’ SNP profiles be used to learn about their ethnic/racial backgrounds?
• Can we find cancer subtypes based on gene/metabolic expression patterns?
• What’s the best way to visualize a high dimensional genomic data?
• How to find "interesting patterns” in the data?

2 Principal Component Analysis
Principal Component Analysis, or PCA, is a well-known and widely used technique applicable
to a wide variety of applications such as dimensionality reduction, data compression, feature
extraction, and visualization. The basic idea is to project a dataset from many correlated
coordinates onto fewer uncorrelated coordinates called principal components while still retaining
most of the variability present in the data (Jolliffe 2005).
As an example, principal component analysis is commonly performed to account for population
stratification in genome wide association study.

2.1 Definition: Principal Component Analysis (PCA)
• Data: n observations living in a p-dimensional space.
• Not all p dimensions are equally useful, especially when p >> n.
• Many are either completely redundant (correlated features) or uninformative (noise

features).
• Need low-dimensional representation of the variables that captures most of the "infor-

mation" in the data.
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• To maximize the information retained, we need to minimize the redundancy, and to do
this, we look for low-dimensional representations that capture most of the variation in
the data.

2.2 PCA: The main Idea
What is a good 1-dim representation of the data?

Use a linear combination of the variables; i.e. a weighted average of the variables.

c1 = w1x1 + w2x2

What is a good choice for the weights w1 and w2?

2.3 The Criterion for Principal Components
In PCA, we try to find the direction with maximum variance

Formally, we seek the vector of weights v = (w1, w2)T using the criterion
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max
||v||=1

V ar(Xv)

2.4 The 1-Dimensional PCA Solution
The interesting direction according to the PCA criterion is the one that captures the majority
of the variance in the data.

• But, what if we need another direction.
• A systematic way to find additional principal components (PC’s), is to choose subsequent

linear combinations orthogonal/perpendicular to previous ones.
• This means that we want to choose v to be orthogonal to w, but to explain the majority

of variability in the data.
• In the case of 2-dimensional data, there is only one choice!! This is always the case for

the last PC.
• For p > 2, there are many orthogonal vectors to choose from, and we need to find the

one that explains the maximum variation in the data, and is orthogonal to the first one.

2.5 The Full PCA Solution for 2 Dimensions
What is a good 1-dim representation of the data?
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2.6 PCA: Summary
Seek the best directions in the data that account for most of the variability
→ principal components: artificial variables that are linear combinations of the original
variables:

c = X v

(n) (n× p) (p)

• c is a linear combination of the elements of X having maximal variance
• v is called the associated loading vector
• For example, we get the first principal component with max. variance

c1 = w1x1 + . . .+ wpxp

where v1 = (w1, . . . , wp)T .
• PCA =⇒ finds units vectors v1, . . . , vr that maximise the variance Xv under the

constraint that vi+1 is orthogonal to v1, . . . , vi

• Reduction dimension:
p variables =⇒ r new variables Xv1, . . . , Xvr called Principal Components

The new PCs form a vectorial subspace of dimension < p

• Project the data on these new axes.
→ approximate representation of the data points in a lower dimensional space

• The first few PCs account for most of the variation in all the original variables
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2.6.1 Cons:

• Interpretation difficult with very large number of variables
• Unsupervised approach

2.7 Objective function for PCA
Objective function:

max
||vh||=1

var(Xhvh), h = 1 . . . H

Several ways of solving PCA:
1. Eigenvalue problem: Sv = λv; c = Xv

S = variance covariance matrix or correlation matrix if X is scaled

2. Singular Value Decomposition (SVD):

X = UDV T

where the columns of U(n× r) and V (p× r) are orthonormal; D = diag[d1, . . . , dr]
such that d1 ≥ d2 ≥ . . . ≥ dr > 0 are the square root of the eigenvalue of XTX.

2.7.1 Solution based on SVD Decomposition

• The column of C = UD are the principal component;
• The columns of V are the corresponding loading.
• The variance of a principal component c1 is equal to its associated eigenvalue λ1.
• The obtained eigenvalues λj are decreasing.

2.8 Singular Value Decomposition (SVD)
Singular Value Decomposition, or SVD, is a computational method often employed to calculate
principal components for a dataset. Using SVD to perform PCA is efficient and numerically
robust. (see https://intoli.com/blog/pca-and-svd/).
Let a matrix M : p× q of rank r:

M = U∆V T =
r∑
l=1

δlulv
T
l ,

• U = (ul) : p× p and V = (vl) : q × q are two orthogonal matrices which contain the
normalised left (resp. right) singular vectors

• ∆ = diag(δ1, . . . , δr, 0, . . . , 0): the ordered singular values δ1 ≥ δ2 ≥ · · · ≥ δr > 0.

2.9 Relation of PCA and SVD
Let the data matrix X be of n×p size, where n is the number of samples and p is the number
of variables. Let us assume that it is centered, i.e. column means have been subtracted and
are now equal to zero.
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Then the p× p covariance matrix C is given by C = XTX/(n− 1). It is a symmetric matrix
and so it can be diagonalized:

C = V LV T ,

where V is a matrix of eigenvectors (each column is an eigenvector) and L is a diagonal
matrix with eigenvalues λi in the decreasing order on the diagonal.
The eigenvectors are called principal axes or principal directions of the data.
Projections of the data on the principal axes are called principal components, also known as
PC scores; these can be seen as new, transformed, variables.
The j-th principal component is given by j-th column of XV . The coordinates of the i-th
data point in the new PC space are given by the i-th row of XV .
if we now perform singular value decomposition of X, we obtain a decomposition

X = U∆V T ,

From here one can easily see that

C = V∆TUTU∆V T /(n− 1) = V
∆2

n− 1V
T ,

meaning that right singular vectors V are principal directions and that singular values are
related to the eigenvalues of covariance matrix via λi = s2

i /(n− 1).
Principal components are given by XV = U∆V TV = U∆.

2.10 Illustration PCA: GWAS
The dataset comes from the R package bigstatr (Privé et al. 2018). It is a subset of a
Genome Wide Asssociation study.
The variables are Single Nucleotide Polymorphism (SNPs) coded 0,1 amd 2 represented the
number of rare allele at different locus (https://ghr.nlm.nih.gov/primer/genomicresearch/snp).
Principal Components Analysis (PCA) is a popular tool that has been used to infer population
structure in genetic data for several decades (see Patterson, Price, and Reich (2006))
library(bigstatsr)

set.seed(1)

X <- big_attachExtdata()

n <- nrow(X)

X[1:2,1:3]

## [,1] [,2] [,3]

## [1,] 2 2 0

## [2,] 1 2 1

dim(X)

## [1] 517 4542

We only use only half of the data
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ind <- sort(sample(n, n/2))

test <- big_SVD(X, fun.scaling = big_scale(), ind.row = ind)

str(test)

## List of 5

## $ d : num [1:10] 178.5 114.5 91 87.1 86.3 ...

## $ u : num [1:258, 1:10] -0.1092 -0.0928 -0.0806 -0.0796 -0.1028 ...

## $ v : num [1:4542, 1:10] 0.00607 0.00739 0.02921 -0.01283 0.01473 ...

## $ center: num [1:4542] 1.34 1.63 1.51 1.64 1.09 ...

## $ scale : num [1:4542] 0.665 0.551 0.631 0.55 0.708 ...

## - attr(*, "class")= chr "big_SVD"

we project the sample on a lower dimensional space to see any structure
plot(test$u)
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0.
00

0.
05

0.
10

test$u[,1]

te
st

$u
[,2

]

class(test)

## [1] "big_SVD"

• A more realistic projection based on the scores
scores <- test$u %*% diag(test$d)

plot(scores[,2]~scores[,1])
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using the classical pca from R
pca <- prcomp(X[ind, ], center = TRUE, scale. = TRUE)

# same scaling

all.equal(test$center, pca$center)

## [1] TRUE

all.equal(test$scale, pca$scale)

## [1] TRUE

projecting on new data
# projecting on new data

ind2 <- setdiff(rows_along(X), ind)

scores.test2 <- predict(test, X, ind.row = ind2)

plot(scores[,2]~scores[,1])

points(scores.test2[,2]~scores.test2[,1],col="red")

−20 −15 −10 −5 0 5 10
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10

−
5

0
5
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15

scores[, 1]
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or
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[, 

2]

Using top PCs as covariates corrects for stratification in GWAS. For example, for case control
studies one can use the following model to detect variants which are related to a disease:
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logit(P (Y = 1|SNPj , PC1, . . . , PC20)) = β0 + β1SNPj + γ1PC1 + . . .+ γ20PC20

2.11 SVD as a Compression/Dimension Reduction Tool
We start by reading an image and we perform SVDs on this image.
if (!"jpeg" %in% installed.packages()) install.packages("jpeg")

# Read image file into an array with three channels (Red-Green-Blue, RGB)

liquet <- jpeg::readJPEG("../../../WORKSHOP-ACEMS-2019/DATA_WORKSHOP/Lecture3/liquet.jpeg")

r <- liquet[, , 1] ; g <- liquet[, , 2] ; b <- liquet[, , 3]

# Performs full SVD of each channel

liquet.r.svd <- svd(r) ; liquet.g.svd <- svd(g) ; liquet.b.svd <- svd(b)

rgb.svds <- list(liquet.r.svd, liquet.g.svd, liquet.b.svd)

These two functions will be needed to display an image stored in an RGB array:
# Function to display an image stored in an RGB array

plot.image <- function(pic, main = "") {

h <- dim(pic)[1] ; w <- dim(pic)[2]

plot(x = c(0, h), y = c(0, w), type = "n", xlab = "", ylab = "", main = main)

rasterImage(pic, 0, 0, h, w)

}

Function to compress an image via SVD of each channel

compress.image <- function(rgb.svds, nb.comp) {

# nb.comp (number of components) should be less than min(dim(img[,,1])),

# i.e., 170 here

svd.lower.dim <- lapply(rgb.svds, function(i) list(d = i$d[1:nb.comp],

u = i$u[, 1:nb.comp],

v = i$v[, 1:nb.comp]))

img <- sapply(svd.lower.dim, function(i) {

img.compressed <- i$u %*% diag(i$d) %*% t(i$v)

}, simplify = 'array')

img[img < 0] <- 0

img[img > 1] <- 1

return(list(img = img, svd.reduced = svd.lower.dim))

}

Let’s plot side-by-side the original and compressed images now.
par(mfrow = c(1, 2))

plot.image(liquet, "Original image")

p <- 20 ; plot.image(compress.image(rgb.svds, p)$img,

paste("SVD with", p, "components"))
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As you can see, with 20 components (over 170 maximum), we can still recognize Benoit!
How much compression did we achieve with 20 components?
object.size(rgb.svds) # Original image

## 1740920 bytes

object.size(compress.image(rgb.svds, p)$svd.reduced) # Compressed image

## 207320 bytes

2.12 Case Study: The liver.toxicity study
I would like to thanks mixOmics team (I contributed in the past) to their great work on
Multivariate Analysis tools. Great materials are provided in the website http://mixomics.org.
This case study has been well and the data are availaible in the mixOmics R packages

First, you have to install the R package mixOmics (Rohart et al. 2017) which is now availaible
on Bioconductor
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("mixOmics", version = "3.8")

library(mixOmics)

The liver.toxicity is a list in the package that contains:
• gene: a data frame with 64 rows and 3116 columns, corresponding to the expression

levels of 3,116 genes measured on 64 rats.
• clinic: a data frame with 64 rows and 10 columns, corresponding to the measurements

of 10 clinical variables on the same 64 rats.
• treatment: data frame with 64 rows and 4 columns, indicating the treatment information

of the 64 rats, such as doses of acetaminophen and times of necropsy.
• gene.ID: a data frame with 3116 rows and 2 columns, indicating geneBank IDs of the

annotated genes.

15
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More details are available at ?liver.toxicity.

2.12.1 Load the data

We first load the data from the package.
data(liver.toxicity)

X <- liver.toxicity$gene

2.12.2 Quick start

MyResult.pca <- pca(X) # 1 Run the method

plotIndiv(MyResult.pca) # 2 Plot the samples

plotVar(MyResult.pca) # 3 Plot the variables

If you were to run pca with this minimal code, you would be using the following default values:
• ncomp =2: the first two principal components are calculated and are used for graphical

outputs;
• center = TRUE: data are centred (mean = 0)
• scale = FALSE: data are not scaled. If scale = TRUE standardizes each variable (vari-

ance = 1).
Other arguments can also be chosen, see ?pca.
The two plots are not extremely meaningful as specific sample patterns should be further
investigated and the variable correlation circle plot contains too many variables to be easily
interpreted. Let’s improve those graphics as shown below to improve interpretation.

2.12.3 Customize plots

Plots can be customized using numerous options in plotIndiv and plotVar. For instance, even
if PCA does not take into account any information regarding the known group membership of
each sample, we can include such information on the sample plot to visualize any ‘natural’
cluster that may corresponds to biological conditions.
Here is an example where we include the sample groups information with the argument group:
plotIndiv(MyResult.pca, group = liver.toxicity$treatment$Dose.Group,

legend = TRUE)
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Additionally, two factors can be displayed using both colours (argument group) and symbols
(argument pch). For example here we display both Dose and Time of exposure and improve
the title and legend:
plotIndiv(MyResult.pca, ind.names = FALSE,

group = liver.toxicity$treatment$Dose.Group,

pch = as.factor(liver.toxicity$treatment$Time.Group),

legend = TRUE, title = 'Liver toxicity: genes, PCA comp 1 - 2',

legend.title = 'Dose', legend.title.pch = 'Exposure')

Liver toxicity: genes, PCA comp 1 − 2
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By including information related to the dose of acetaminophen and time of exposure enables us
to see a cluster of low dose samples (blue and orange, top left at 50 and 100mg respectively),
whereas samples with high doses (1500 and 2000mg in grey and green respectively) are more
scattered, but highlight an exposure effect.

17



Introduction to PCA and PLS

To display the results on other components, we can change the comp argument provided
we have requested enough components to be calculated. Here is our second PCA with 3
components:
MyResult.pca2 <- pca(X, ncomp = 3)

plotIndiv(MyResult.pca2, comp = c(1,3), legend = TRUE,

group = liver.toxicity$treatment$Time.Group,

title = 'Multidrug transporter, PCA comp 1 - 3')
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Here, the 3rd component on the y-axis clearly highlights a time of exposure effect.

2.12.4 Amount of variance explained and choice of number of components

The amount of variance explained can be extracted with the following: a screeplot or the
actual numerical proportions of explained variance, and cumulative proportion.
MyResult.pca3 <- pca(X, ncomp = 10)

plot(MyResult.pca3)
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MyResult.pca3

## Eigenvalues for the first 10 principal components, see object$sdev^2:

## PC1 PC2 PC3 PC4 PC5 PC6 PC7

## 17.9714164 9.0792340 4.5677094 3.2043829 1.9567988 1.4686086 1.3281206

## PC8 PC9 PC10

## 1.0820554 0.8434155 0.6373565

##

## Proportion of explained variance for the first 10 principal components, see object$explained_variance:

## PC1 PC2 PC3 PC4 PC5 PC6 PC7

## 0.35684128 0.18027769 0.09069665 0.06362638 0.03885429 0.02916076 0.02637122

## PC8 PC9 PC10

## 0.02148534 0.01674690 0.01265538

##

## Cumulative proportion explained variance for the first 10 principal components, see object$cum.var:

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

## 0.3568413 0.5371190 0.6278156 0.6914420 0.7302963 0.7594570 0.7858283 0.8073136

## PC9 PC10

## 0.8240605 0.8367159

##

## Other available components:

## --------------------

## loading vectors: see object$rotation

There are no clear guidelines on how many components should be included in PCA: it is
data dependent and level of noise dependent. We often look at the ‘elbow’ on the screeplot
above as an indicator that the addition of PCs does not drastically contribute to explain the
remainder variance.

2.12.5 Other useful plots

We can also have a look at the variable coefficients in each component with the loading
vectors. The loading weights are represented in decreasing order from bottom to top in
plotLoadings. Their absolute value indicates the importance of each variable to define each
PC, as represented by the length of each bar. See ?plotLoadings to change the arguments.
# a minimal example

plotLoadings(MyResult.pca)

# a customized example to only show the top 100 genes

# and their gene name

plotLoadings(MyResult.pca, ndisplay = 100,

name.var = liver.toxicity$gene.ID[, "geneBank"],

size.name = rel(0.3))
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Such representation will be more informative once we select a few variables using an extension
of PCA called Sparse PCA.
Plots can also be displayed in 3 dimensions using the option style="3d", and interactively
(we use the rgl package for this).
plotIndiv(MyResult.pca2,

group = liver.toxicity$treatment$Dose.Group, style="3d",

legend = TRUE, title = 'Liver toxicity: genes, PCA comp 1 - 2 - 3')

3 Partial Least Square (PLS)
PLS is a family of multivariate statistical techniques based on dimension reduction developed
by S. Wold and H. Wold (1966, 1983). It can be seen as a supervised version of PCA.

Predictor matrix:

- n observations

- p variables

X
n Response matrix:

- n observations

- q variables

Y
n

p q

3.1 Modelling Aims
Partial Least Square is also a Dimension reduction method with the two following aims:

• Symmetric relationship: analyse the shared information.
• Asymmetric relationship: X = predictors, and Y = response.

When Y is only one column (univariate case), PLS can be summarized as
• Dimension reduction method: p dimension space ⇒ K dimension space (K << p)
• PLS looks the best components the most correlated to the response variable
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• The PLS components are linear combinations of the variables

Ck = u1 × SNP1 + u2 × SNP2 + . . .+ up × SNPp

• It is a supervised approach
In more general case (Y multivariate q > 1):

• PLS finds pairs of latent (score) vectors ξ = Xu, ω = Yv

ξ = u1 × gene1 + u2 × gene2 + · · ·+ up × genep
ω = v1 × pheno1 + v2 × pheno2 + · · ·+ vp × phenoq

• Symmetric relationship. Analyse the shared information.
• Asymmetric relationship. There is a set of response and predictor variables that can be

used for prediction.

3.2 Objective function:

max
||uh||=1,||vh||=1

cov(Xhuh, Yhvh) h = 1 . . . H

Principle:
• Iterative procedure 7→ orthogonal component (latent variable ξh = Xhuh).
• successive local regressions on the latent variables.
• X and Y are successively deflated.

3.3 Univariate case Y ∈ <n

Univariate case Y ∈ <n: step 1 :max||u||=1 cov(Xu, Y )

cov(Xu, Y ) = (Xu)TY
= < u, XTY >= ||XTY ||cos(u, XTY )

↪→ u = XTY
||XTY ||
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• Step 2: find a new linear combination no correlated to ξ = Xu which explain the
residuals Y − dξ where d is the regression of Y on ξ = Xu

• Deflated step: Y ← Y − dξ and X ← X − ξcT where c is the regression of X on
ξ = Xu;

• the columns of the new X are orthogonal (no correlated) to Xu.

3.4 Partial Least Squares: regression mode (multivariate case:
Y (n× q))

x x yx y y2 p 21 q1

h

ξ
h

1

2

n

1

2

n

ω
h

u v
h

c
h

e
h

X = 
h

= X
h−1

− ξ
h
c’

h
Y

h
Y

h−1
ω

h
e’

h
−

For each iteration h, h = 1..H, decompose X and Y into:
1. Loadings vectors uh and vh, p- and q- dimensional vectors
2. Latent variables ξh and ωh, n-dimensional vectors
3. Regression of Xh−1 and Yh−1 on ξh reg. coeff. ch and eh
4. Residual matrices: deflation step of Xh−1 and Yh−1

3.5 Algorithm: regression mode
Objective function:

max
||uh||=1,||vh||=1

cov(Xhuh, Yhvh) h = 1 . . . H

Start: set w to the first column of Y
1. u = XTw

wTw
, scale u to one. u is the loading vector associated to X

2. ξ = Xu is the latent variable associated to X

3. v = Y T ξ
ξT ξ

, scale v to one. v is the loading vector associated to Y
4. w = Y v is the latent variable associated to Y .
5. If convergence then 6 else 1

6. c = XT ξ
ξT ξ

, e = Y T ξ
ξT ξ

are the partial regression coefficients from the regression of X (Y )
onto ξ.

7. Deflation step: Compute the residual matrices X ← X − ξcT and Y ← Y − ξeT

3.5.1 PLS family

PLS = Partial Least Squares or Projection to Latent Structures
Four main methods coexist in the literature:
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;
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(ii) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);
(iii) PLS in mode B (PLS-W2B) also called Canonical Correlation Analysis (CCA);
(iv) Partial Least Squares Regression (PLSR, or PLS2).

• (i),(ii) and (iii) are symmetric while (iv) is asymmetric.
• Different objective functions to optimise.
• Good news: all use the singular value decomposition (SVD).

3.6 PLS connected to Singular Value Decomposition (SVD)

3.6.1 Reminder

Let a matrix M : p× q of rank r:

M = U∆V T =
r∑
l=1

δlulv
T
l ,

• U = (ul) : p× p and V = (vl) : q × q are two orthogonal matrices which contain the
normalised left (resp. right) singular vectors

• ∆ = diag(δ1, . . . , δr, 0, . . . , 0): the ordered singular values δ1 ≥ δ2 ≥ · · · ≥ δr > 0.

3.6.2 Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS methods as:

(u∗, v∗) = argmax
‖u‖2=‖v‖2=1

Cov(Xh−1u, Yh−1v), h = 1, . . . ,H

Matrices Xh and Yh are obtained recursively from Xh−1 and Yh−1.

The four methods differ by the deflation process, chosen so that the above scores or weight
vectors satisfy given constraints.
The solution at step h is obtained by computing only the first triplet (δ1, u1, v1) of singular
elements of the SVD of Mh−1 = XT

h−1Yh−1:

(u∗, v∗) = (u1, v1)

3.7 PLS in practice: the nutrimouse study
The nutrimouse study contains the expression levels of genes potentially involved in nutritional
problems and the concentrations of hepatic fatty acids for forty mice. The data sets come
from a nutrigenomic study in the mouse, in which the effects of five regimens with contrasted
fatty acid compositions on liver lipids and hepatic gene expression in mice were considered.
Two sets of variables were measured on 40 mice:

• gene: the expression levels of 120 genes measured in liver cells, selected among (among
about 30,000) as potentially relevant in the context of the nutrition study. These
expressions come from a nylon microarray with radioactive labelling.
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• lipid: concentration (in percentage) of 21 hepatic fatty acids measured by gas chro-
matography.

• diet: a 5-level factor. Oils used for experimental diets preparation were corn and
colza oils (50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated
fatty acid diet (COC), sunflower oil for an Omega6 fatty acid-rich diet (SUN), linseed
oil for an Omega3-rich diet (LIN) and corn/colza/enriched fish oils for the FISH diet
(43/43/14).

• genotype 2-levels factor indicating either wild-type (WT) and PPARα -/- (PPAR).
More details can be found in ?nutrimouse.
To illustrate PLS, we will integrate the gene expression levels (gene) with the concentrations
of hepatic fatty acids (lipid).

3.7.1 Set up the data

We first set up the data as X expression matrix and Y as the lipid abundance matrix. We also
check that the dimensions are correct and match:
library(mixOmics)

data(nutrimouse)

X <- nutrimouse$gene

Y <- nutrimouse$lipid

dim(X); dim(Y)

## [1] 40 120

## [1] 40 21

3.7.2 Quick start

MyResult.pls <- pls(X,Y, ncomp=10)

plotIndiv(MyResult.pls)

plotVar(MyResult.pls)

If you were to run pls with minimal code, you would be using the following default values:
• ncomp = 2: the first two PLS components are calculated and are used for graphical

outputs;
• scale = TRUE: data are scaled (variance = 1, strongly advised here);
• mode = "regression": by default a PLS regression mode should be used (see ?? for

more details) .
Because PLS generates a pair of components, each associated to each data set, the function
plotIndiv produces 2 plots that represent the same samples projected in either the space
spanned by the X-components, or the Y-components.

3.7.3 Customize sample plots

In addition, you can choose the representation space to be either the components from the
X-data set, the Y- data set, or an average between both components rep.space = 'XY-vari

ate'. See more examples in examples(plotIndiv) and on website. Here are two examples
with colours indicating genotype or diet:
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plotIndiv(MyResult.pls, group = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Genotype',

ind.names = nutrimouse$diet,

title = 'Nutrimouse: PLS')
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plotIndiv(MyResult.pls, group=nutrimouse$diet,

pch = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Diet', legend.title.pch = 'Genotype',

ind.names = FALSE,

title = 'Nutrimouse: PLS')
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3.7.4 Customize variable plots

See (example(plotVar)) for more examples. Here we change the size of the labels. By default
the colours are assigned to each type of variable. The coordinates of the variables can also be
saved as follows:
plotVar(MyResult.pls, cex=c(3,2), legend = TRUE)
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coordinates <- plotVar(MyResult.pls, plot = FALSE)

In this example, the figure is difficult to interpret and we would prefer to use a sparse vesrion
of PLS to selecet the most important variable.
A cut-off can be set to display only the variables that mostly contribute to the definition of
each component. Those variables should be located towards the circle of radius 1, far from
the centre.
plotVar(MyResult.pls, cutoff=0.5)
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In this particular case, no variable selection was performed. Only the display was altered to
show a subset of variables.

3.7.5 Variable Importance in the Projection (VIP)

Variable importance in projection (VIP) coefficients reflect the relative importance of each
X variable for each X variate in the prediction model. VIP coefficients thus represent the
importance of each X variable in fitting both the X- and Y-variates, since the Y-variates are
predicted from the X-variates.
my.vip <- sort(vip(MyResult.pls)[,1],decreasing = TRUE)

barplot(my.vip[1:50],

beside = FALSE,

ylim = c(0, max(my.vip)), legend = rownames(my.vip)[1:50],

main = "Variable Importance in the Projection", font.main = 4)
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3.7.6 Loading plots

The loading plots help visualise the coefficients assigned to each selected variable on each
component:
plotLoadings(MyResult.pls, comp = 1, size.name = rel(0.5))
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3.8 Tuning parameters and numerical outputs
For PLS, we have to choose the number of components to retain ncomp.
We use the perf function and repeated k-fold cross-validation to calculate the Q2 criterion
used in the SIMCA-P software. The rule of thumbs is that a PLS component should be
included in the model if its value is ≤ 0.0975. Here we use 5-fold CV repeated 10 times (note
that we advise to use at least 50 repeats, and choose the number of folds that are appropriate
for the sample size of the data set).
We run a PLS model with a sufficient number of components first, then run perf on the
object.
MyResult.pls <- pls(X,Y, ncomp = 6)

set.seed(30) # for reproducbility

perf.pls <- perf(MyResult.pls, validation = "Mfold", folds = 5,

progressBar = FALSE, nrepeat = 10)

plot(perf.pls$Q2.total)

abline(h = 0.0975)
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This example seems to indicate that up to 3 components could be enough. In a small p+ q
setting we generally observe a Q2 that decreases, but that is not the case here as n << p+ q.

3.8.1 Reminder of Cross-Validation

• One idea is to split the data set into two fractions, then use one portion to fit the model
and the other to evaluate how well the estimated modelpredicted the observations in
the second portion.

• The problem with this solution is that we rarely have so much data that we can freely
part with half of it solely for the purpose of choosing tuning parameters.

• To finesse this problem, cross-validation splits the data into K folds, fits the data on
K − 1 of the folds, and evaluates risk on the fold that was left out.

3.8.2 K-fold cross validation

Let k : 1, . . . , N → 1, . . . ,K the function indicating the partition to which observation i is
allocated:

CV = 1
n

n∑
i=1

(yi − f̂−k(i)(Xi))2

where f̂−k(i) is the prediction of the subject i based on a model fitted with the k(i)th part of
the data removed.

3.8.3 M-K-fold cross validation

29



Introduction to PCA and PLS

Let k : 1, . . . , N → 1, . . . ,K the function indicating the partition to which observation i is
allocated:

CV = 1
M

∑(
1
n

n∑
i=1

(yi − f̂−k(i)(Xi))2

)
where f̂−k(i) is the prediction of the subject i based on a model fitted with the k(i)th part of
the data removed.

3.8.4 Cross-validation: Leave One Out (loo)

• Ŷi is the prediction of the i-th observation obtained with the model fitted on all the
observation.

• Ŷ
(−i)
i is the prediction of the i-th observation obtained with the model fitted on all the

observation except the i-th observation.

The cross-validation approach compares predictions Ŷ (−i)
i to observations Yi.

3.8.5 Choice of the number of latent variables H using Q2
H

Determine Ĥ by cross-validation
For each H = 1 . . . n:

1. Evaluate Ŷ Hi and Ŷ H(−i)
i

2. Evaluate Residual Sum of Squares : RSSH =
n∑
i=1

(
Yi − Ŷ Hi

)2

3. Evaluate PRediction Error Sum of Squares : PRESSH =
n∑
i=1

(
Yi − Ŷ H(−i)

i

)2

4. Evaluate Q2
H = 1− PRESSH

RSSH−1

4 Sparse Version of PCA and PLS
Both PCA and PLS approaches enable to perform dimension reduction by constructing H
latent variables which are linear combination of all variables:

Ck = u1
k ×X1 + u2

k ×X2 + . . .+ upk ×Xp, k = 1, . . . ,H

PCA and PLS do not provide a direct variable selection method.

4.1 Sparse Version
• sparse model select the relevant predictors
• Some coefficients ulk are equal to 0

Ck = u1
k ×X1 + u2

k︸︷︷︸
=0

×X2 + u3
k︸︷︷︸

=0

×X3 + . . .+ upk ×Xp
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• Both sparse PCA and sparse PLS components are linear combinations of the selected
variables

→ use SVD and low rank approximation to include penalization on the loading vector.

4.2 Intuition of sparse PCA and sparse PLS

4.2.1 SVD properties

Eckart-Young (1936) states that the (truncated) SVD of a given matrixM (of rank r) provides
the best reconstitution (in a least squares sense) of M by a matrix with a lower rank k:

min
A of rank k

‖M −A‖2
F =

∥∥∥∥∥M −
k∑
`=1

δ`u`v
T
`

∥∥∥∥∥
2

F

=
r∑

`=k+1
δ2
` .

If the minimum is searched for matrices A of rank 1, which are under the form ũṽT where ũ,
ṽ are non-zero vectors, we obtain

min
ũ,ṽ

∥∥M − ũṽT∥∥2
F

=
r∑
`=2

δ2
` =

∥∥M − δ1u1v
T
1
∥∥2
F
.

Thus, solving

argmin
ũ,ṽ

∥∥Mh−1 − ũṽT
∥∥2
F

and norming the resulting vectors gives us u1 and v1. This is another approach to solve the
PLS optimization problem.

4.2.2 Towards sparse PLS

• Shen and Huang (2008) connected the previous optimization problem (in a PCA context)
to least square minimisation in regression:

∥∥Mh−1 − ũṽT
∥∥2
F

=

∥∥∥∥∥∥∥vec(Mh−1)︸ ︷︷ ︸
y

− (Ip ⊗ ũ)ṽ︸ ︷︷ ︸
Xβ

∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥vec(Mh−1)︸ ︷︷ ︸
y

− (v ⊗ Iq)ũ︸ ︷︷ ︸
Xβ

∥∥∥∥∥∥∥
2

2

.

↪→ Possible to use many existing variable selection techniques using regularization
penalties.

We propose iterative alternating algorithms to find normed vectors ũ/‖ũ‖ and ṽ/‖ṽ‖ that
minimise the following penalised sum-of-squares criterion∥∥Mh−1 − ũṽT

∥∥2
F

+ Pλ(ũ, ṽ),

for various penalization terms Pλ(ũ, ṽ).
↪→ We can obtain several sparse versions (in terms of the weights u and v).
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4.3 Example sparse PLS
Sparse PLS solves:

min
uh,vh

||Mh − uhvTh ||2F + λh1

P∑
i=1

2|ui|+ λh2

Q∑
i=1

2|vi|, h = 1 . . . H

4.4 Choice of the sparsity: λh1 and λh2
• k-fold cross validation or leave-one-out
↪→ RMSEP=Root Mean Squared Error Prediction

• For small samples (e.g n ≤ 100) estimated prediction error might be biased
↪→ arbitrary choose the number of non-zero components in each loading vector uh and
vh.

the biologist will also help choosing these parameters!

4.5 Sparse PLS in action

MyResult.spls <- spls(X,Y, keepX = c(25, 25), keepY = c(5,5))

plotIndiv(MyResult.spls)

plotVar(MyResult.spls)

If you were to run spls with this minimal code, you would be using the following default
values:

• ncomp = 2: the first two PLS components are calculated and are used for graphical
outputs;

• scale = TRUE: data are scaled (variance = 1, strongly advised here);
• mode = "regression": by default a PLS regression mode should be used

4.5.1 Customize sample plots

plotIndiv(MyResult.spls, group = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Genotype',

ind.names = nutrimouse$diet,

title = 'Nutrimouse: sPLS')
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plotIndiv(MyResult.spls, group=nutrimouse$diet,

pch = nutrimouse$genotype,

rep.space = "XY-variate", legend = TRUE,

legend.title = 'Diet', legend.title.pch = 'Genotype',

ind.names = FALSE,

title = 'Nutrimouse: sPLS')
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4.5.2 Customize variable plots

plotVar(MyResult.spls, cex=c(3,2), legend = TRUE)

33



Introduction to PCA and PLS

ACBP
ACC2

ACOTH

ALDH3
AOX

BIEN

BSEP
CACP

CAR1

CBS

CPT2CYP27a1

CYP3A11

CYP4A10
CYP4A14FAS

FAT

GK
GSTa

GSTpi2

HPNCL
L.FABP

Lpin2

MCAD

MDR2

MS

Ntcp

PDK4

PECI
PLTP

PMDCI

RXRa
RXRg1SHP1

SIAT4c

SPI1.1

SR.BI

THIOLTpalphaTpbeta

UCP2

VDR
Waf1apoC3

cHMGCoAS

cMOAT

eif2g

mHMGCoAS

C16.0

C18.0

C16.1n.9

C18.1n.9

C18.1n.7

C20.1n.9

C18.2n.6

C20.2n.6

C20.3n.6

C22.6n.3

Correlation Circle Plots

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Component  1

C
om

po
ne

nt
  2 Block

X

Y

coordinates <- plotVar(MyResult.spls, plot = FALSE)

4.5.3 Variable selection outputs

The selected variables can be extracted using the selectVar function for further analysis.
MySelectedVariables <- selectVar(MyResult.spls, comp = 1)

MySelectedVariables$X$name # Selected genes on component 1

## [1] "SR.BI" "SPI1.1" "PMDCI" "CYP3A11" "Ntcp" "GSTpi2" "FAT"

## [8] "apoC3" "UCP2" "CAR1" "Waf1" "ACOTH" "eif2g" "PDK4"

## [15] "CYP4A10" "VDR" "SIAT4c" "RXRg1" "RXRa" "CBS" "SHP1"

## [22] "MCAD" "MS" "CYP4A14" "ALDH3"

MySelectedVariables$Y$name # Selected lipids on component 1

## [1] "C18.0" "C16.1n.9" "C18.1n.9" "C20.3n.6" "C22.6n.3"

The loading plots help visualise the coefficients assigned to each selected variable on each
component:
plotLoadings(MyResult.spls, comp = 1, size.name = rel(0.5))
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4.5.4 Tuning parameter and numerical outputs

The number of variables to select on each component and on each data set keepX and keepY

have to be chosen.
These tuning parameters can be quite difficult to tune. Here is a minimal example where
we only tune keepX based on the Mean Absolute Value. Other measures proposed are Mean
Square Error, Bias and R2 (see ?tune.spls):
list.keepX <- c(2:10, 15, 20)

# tuning based on MAE

set.seed(30) # for reproducbility in this vignette, otherwise increase nrepeat

tune.spls.MAE <- tune.spls(X, Y, ncomp = 3,

test.keepX = list.keepX,

validation = "Mfold", folds = 5,

nrepeat = 10, progressBar = FALSE,

measure = 'MAE')

plot(tune.spls.MAE, legend.position = 'topright')
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Based on the lowest MAE obtained on each component, the optimal number of variables to
select in the X data set, including all variables in the Y data set would be:
tune.spls.MAE$choice.keepX

## comp1 comp2 comp3

## 15 3 20

To Tune keepX and keepY conjointly, one can tune one parameter then the other.

4.5.5 Clustered Image Maps

A clustered image map can be produced using the cim function. You may experience figures
margin issues in RStudio. Best is to either use X11() or save the plot as an external file.
For example to show the correlation structure between the X and Y variables selected on
component 1:
X11()

cim(MyResult.spls, comp = 1)

cim(MyResult.spls, comp = 1, save = 'jpeg', name.save = 'PLScim')

4.5.6 Relevance networks

Using the same similarity matrix input in CIM, we can also represent relevance bipartite
networks. Those networks only represent edges between on type of variable from X and the
other type of variable, from Y. Whilst we use sPLS to narrow down to a few key correlated
variables, our keepX and keepY values might still be very high for this kind of output. A
cut-off can be set based on the correlation coefficient between the different types of variables.
Other arguments such as interactive = TRUE enables a scrollbar to change the cut-off value
interactively, see other options in ?network. Additionally, the graph object can be saved to be
input into Cytoscape for an improved visualisation.
X11()

network(MyResult.spls, comp = 1)
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network(MyResult.spls, comp = 1, cutoff = 0.6, save = 'jpeg', name.save = 'PLSnetwork')

# save as graph object for cytoscape

myNetwork <- network(MyResult.spls, comp = 1)$gR

4.6 Sparse PCA in action
I would like to apply PCA but also be able to identify the key variables that contribute to the
explanation of most variance in the data set.

The user needs to provide the number of variables to select on each PC. Here for example
we ask to select the top 15 genes contributing to the definition of PC1, the top 10 genes
contributing to PC2 and the top 5 genes for PC3 (keepX=c(15,10,5)).
data(liver.toxicity)

X <- liver.toxicity$gene

MyResult.spca <- mixOmics::spca(X, ncomp = 3, keepX = c(15,10,5)) # 1 Run the method

plotIndiv(MyResult.spca, group = liver.toxicity$treatment$Dose.Group, # 2 Plot the samples

pch = as.factor(liver.toxicity$treatment$Time.Group),

legend = TRUE, title = 'Liver toxicity: genes, sPCA comp 1 - 2',

legend.title = 'Dose', legend.title.pch = 'Exposure')

## Warning in shape.input.plotIndiv(object = object, n = n, blocks = blocks, :

## 'ind.names' is set to FALSE as 'pch' overrides it

Liver toxicity: genes, sPCA comp 1 − 2
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plotVar(MyResult.spca, cex = 1) # 3 Plot the variables
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# cex is used to reduce the size of the labels on the plot

Selected variables can be identified on each component with the selectVar function. Here
the coefficient values are extracted, but there are other outputs, see ?selectVar:
selectVar(MyResult.spca, comp = 1)$value

## Error in selectVar(MyResult.spca, comp = 1): object 'MyResult.spca' not found

Those values correspond to the loading weights that are used to define each component. A
large absolute value indicates the importance of the variable in this PC. Selected variables are
ranked from the most important (top) to the least important.
We can complement this output with plotLoadings. We can see here that all coefficients are
negative.
plotLoadings(MyResult.spca)

## Error in plotLoadings(MyResult.spca): object 'MyResult.spca' not found

If we look at component two, we can see a mix of positive and negative weights (also see in
the plotVar), those correspond to variables that oppose the low and high doses (see from the
‘plotIndiv):
selectVar(MyResult.spca, comp=2)$value

## Error in selectVar(MyResult.spca, comp = 2): object 'MyResult.spca' not found

plotLoadings(MyResult.spca, comp = 2)

## Error in plotLoadings(MyResult.spca, comp = 2): object 'MyResult.spca' not found

4.7 Tuning parameters
For this set of methods, two parameters need to be chosen:

• The number of components to retain,
• The number of variables to select on each component for sparse PCA.
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The function tune.pca calculates the percentage of variance explained for each component,
up to the minimum between the number of rows, or column in the data set. The ‘optimal’
number of components can be identified if an elbow appears on the screeplot. In the example
below the cut-off is not very clear, we could choose 2 components.
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Regarding the number of variables to select in sparse PCA, there is not clear criterion at
this stage. As PCA is an exploration method, we prefer to set arbitrary thresholds that will
pinpoint the key variables to focus on during the interpretation stage.

4.8 Other implementation of Sparse PCA
The R package elasticnet (Zou and Hastie 2018) provides the spca function to perform a
sparse PCA model.
library(elasticnet)

However, the package does not provide a function to choose the number of variables in each
component.
The R package PMA ((Witten et al. 2019)) provides a way to tune the number of variables in
each component. You can explore the function SPC.cv for it.
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("impute", version = "3.8")

library(PMA)

?SPC.cv
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5 PLS - Discriminant Analysis (PLS-DA) and Sparse
PLS-DA

PLSDA overview

PLS−DA

Quantitative

Qualitative

5.1 Biological question
I am analysing a single data set (e.g. transcriptomics data) and I would like to classify my
samples into known groups and predict the class of new samples. In addition, I am interested
in identifying the key variables that drive such discrimination.

5.2 The srbct study
The data are directly available in a processed and normalised format from the mixOmics

package. The Small Round Blue Cell Tumours (SRBCT) dataset from (Khan et al. 2001)
includes the expression levels of 2,308 genes measured on 63 samples. The samples are
classified into four classes as follows: 8 Burkitt Lymphoma (BL), 23 Ewing Sarcoma (EWS),
12 neuroblastoma (NB), and 20 rhabdomyosarcoma (RMS).
The srbct dataset contains the following:
$gene: a data frame with 63 rows and 2308 columns. The expression levels of 2,308 genes in
63 subjects.
$class: a class vector containing the class tumour of each individual (4 classes in total).
$gene.name: a data frame with 2,308 rows and 2 columns containing further information on
the genes.
More details can be found in ?srbct.
To illustrate PLS-DA, we will analyse the gene expression levels of srbct$gene to discriminate
the 4 groups of tumours.
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5.3 Principle of sparse PLS-DA
Although Partial Least Squares was not originally designed for classification and discrimination
problems, it has often been used for that purpose (Nguyen and Rocke 2002; Tan et al. 2004).
The response matrix Y is qualitative and is internally recoded as a dummy block matrix that
records the membership of each observation, i.e. each of the response categories are coded
via an indicator variable.
The PLS regression (now PLS-DA) is then run as if Y was a continuous matrix. This PLS
classification trick works well in practice, as demonstrated in many references (Barker and
Rayens 2003; Nguyen and Rocke 2002; Boulesteix and Strimmer 2007; Chung and Keles
2010).
Sparse PLS-DA performs variable selection and classification in a one step procedure. sPLS-DA
is a special case of sparse PLS described previously, where `1 penalization is applied on the
loading vectors associated to the X data set.
We will mainly focus on sparse PLS-DA (see Lê Cao, Boitard, and Besse (2011)) that is
more suited for large biological data sets where the aim is to identify molecular signatures,
as well as classifying samples. We first set up the data as X expression matrix and Y as a
factor indicating the class membership of each sample. We also check that the dimensions
are correct and match:
library(mixOmics)

data(srbct)

X <- srbct$gene

Y <- srbct$class

summary(Y)

## EWS BL NB RMS

## 23 8 12 20

dim(X); length(Y)

## [1] 63 2308

## [1] 63

5.3.1 Quick start

For a quick start we arbitrarily set the number of variables to select to 50 on each of the 3
components of PLS-DA.
MyResult.splsda <- splsda(X, Y, keepX = c(50,50)) # 1 Run the method

plotIndiv(MyResult.splsda) # 2 Plot the samples

plotVar(MyResult.splsda) # 3 Plot the variables

selectVar(MyResult.splsda, comp=1)$name # Selected variables on component 1

As PLS-DA is a supervised method, the sample plot automatically displays the group mem-
bership of each sample. We can observe a clear discrimination between the BL samples and
the others on the first component (x-axis), and EWS vs the others on the second component
(y-axis). Remember that this discrimination spanned by the first two PLS-DA components is
obtained based on a subset of 100 variables (50 selected on each component).
From the plotIndiv the axis labels indicate the amount of variation explained per component.
Note that the interpretation of this amount is not the same as in PCA. In PLS-DA, the aim
is to maximise the covariance between X and Y, not only the variance of X as it is the case in
PCA!
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PLS-DA without variable selection can be performed as:
MyResult.plsda <- plsda(X,Y) # 1 Run the method

plotIndiv(MyResult.plsda) # 2 Plot the samples

plotVar(MyResult.plsda) # 3 Plot the variables

5.4 To go further

5.4.1 Customize sample plots

The sample plots can be improved in various ways. First, if the names of the samples are
not meaningful at this stage, they can be replaced by symbols (ind.names=TRUE). Confidence
ellipses can be plotted for each sample (ellipse = TRUE, confidence level set to 95% by
default, see the argument ellipse.level), Additionally, a star plot displays arrows from each
group centroid towards each individual sample (star = TRUE). A 3D plot is also available,
see plotIndiv for more details.
plotIndiv(MyResult.splsda, ind.names = FALSE, legend=TRUE,

ellipse = TRUE, star = TRUE, title = 'sPLS-DA on SRBCT',

X.label = 'PLS-DA 1', Y.label = 'PLS-DA 2')

sPLS−DA on SRBCT
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5.4.2 Customize variable plots

The name of the variables can be set to FALSE (var.names=FALSE):
plotVar(MyResult.splsda, var.names=FALSE)
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In addition, if we had used the non sparse version of PLS-DA, a cut-off can be set to display
only the variables that mostly contribute to the definition of each component. Those variables
should be located towards the circle of radius 1, far from the centre.
plotVar(MyResult.plsda, cutoff=0.7)
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In this particular case, no variable selection was performed. Only the display was altered to
show a subset of variables.

5.4.3 Other useful plots

5.4.3.1 ROC As PLS-DA acts as a classifier, we can plot a ROC Curve to complement
the sPLS-DA classification performance results detailed latter. The AUC is calculated from
training cross-validation sets and averaged.
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auc.plsda <- auroc(MyResult.splsda)
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5.4.4 Variable selection outputs

First, note that the number of variables to select on each component does not need to be
identical on each component, for example:
MyResult.splsda2 <- splsda(X,Y, ncomp=3, keepX=c(15,10,5))

Selected variables are listed in the selectVar function:
selectVar(MyResult.splsda2, comp=1)$value

## value.var

## g123 0.53516982

## g846 0.41271455

## g335 0.30309695

## g1606 0.30194141

## g836 0.29365241

## g783 0.26329876

## g758 0.25826903

## g1386 0.23702577

## g1158 0.15283961

## g585 0.13838913

## g589 0.12738682

## g1387 0.12202390

## g1884 0.08458869

## g1295 0.03150351

## g1036 0.00224886

and can be visualised in plotLoadings with the arguments contrib = 'max' that is going to
assign to each variable bar the sample group colour for which the mean (method = 'mean') is
maximum. See example(plotLoadings) for other options (e.g. min, median)
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plotLoadings(MyResult.splsda2, contrib = 'max', method = 'mean')
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Interestingly from this plot, we can see that all selected variables on component 1 are highly
expressed in the BL (orange) class. Setting contrib = 'min' would highlight that those
variables are lowly expressed in the NB grey class, which makes sense when we look at the
sample plot.
Since 4 classes are being discriminated here, samples plots in 3d may help interpretation:
plotIndiv(MyResult.splsda2, style="3d")

5.4.5 Tuning parameters and numerical outputs

For this set of methods, three parameters need to be chosen:
1 - The number of components to retain ncomp. The rule of thumb is usually K − 1 where K
is the number of classes, but it is worth testing a few extra components.
2 - The number of variables keepX to select on each component for sparse PLS-DA,
3 - The prediction distance to evaluate the classification and prediction performance of
PLS-DA.
For item 1, the perf evaluates the performance of PLS-DA for a large number of components,
using repeated k-fold cross-validation. For example here we use 3-fold CV repeated 10 times
(note that we advise to use at least 50 repeats, and choose the number of folds that are
appropriate for the sample size of the data set):
MyResult.plsda2 <- plsda(X,Y, ncomp=10)

set.seed(30) # for reproducibility in this vignette, otherwise increase nrepeat

MyPerf.plsda <- perf(MyResult.plsda2, validation = "Mfold", folds = 3,

progressBar = FALSE, nrepeat = 10) # we suggest nrepeat = 50
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# type attributes(MyPerf.plsda) to see the different outputs

# slight bug in the output function currently see the quick fix below

#plot(MyPerf.plsda, col = color.mixo(5:7), sd = TRUE, legend.position = "horizontal")

# quick fix

matplot(MyPerf.plsda$error.rate$BER, type = 'l', lty = 1,

col = color.mixo(1:3),

main = 'Balanced Error rate')

legend('topright',

c('max.dist', 'centroids.dist', 'mahalanobis.dist'),

lty = 1,

col = color.mixo(5:7))
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The plot outputs the classification error rate, or Balanced classification error rate when
the number of samples per group is unbalanced, the standard deviation according to three
prediction distances. Here we can see that for the BER and the maximum distance, the best
performance (i.e. low error rate) seems to be achieved for ncomp = 3.
In addition (item 3 for PLS-DA), the numerical outputs listed here can be reported as
performance measures:
MyPerf.plsda

##

## Call:

## perf.mixo_plsda(object = MyResult.plsda2, validation = "Mfold", folds = 3, nrepeat = 10, progressBar = FALSE)

##

## Main numerical outputs:

## --------------------

## Error rate (overall or BER) for each component and for each distance: see object$error.rate

## Error rate per class, for each component and for each distance: see object$error.rate.class

## Prediction values for each component: see object$predict

## Classification of each sample, for each component and for each distance: see object$class

## AUC values: see object$auc if auc = TRUE

##

## Visualisation Functions:

## --------------------
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## plot

Regarding item 2, we now use tune.splsda to assess the optimal number of variables to
select on each component. We first set up a grid of keepX values that will be assessed on
each component, one component at a time. Similar to above we run 3-fold CV repeated 10
times with a maximum distance prediction defined as above.
list.keepX <- c(5:10, seq(20, 100, 10))

list.keepX # to output the grid of values tested

## [1] 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

set.seed(30) # for reproducbility in this vignette, otherwise increase nrepeat

tune.splsda.srbct <- tune.splsda(X, Y, ncomp = 3, # we suggest to push ncomp a bit more, e.g. 4

validation = 'Mfold',

folds = 3, dist = 'max.dist', progressBar = FALSE,

measure = "BER", test.keepX = list.keepX,

nrepeat = 10) # we suggest nrepeat = 50

We can then extract the classification error rate averaged across all folds and repeats for each
tested keepX value, the optimal number of components (see ?tune.splsda for more details),
the optimal number of variables to select per component which is summarised in a plot where
the diamond indicated the optimal keepX value:
error <- tune.splsda.srbct$error.rate

ncomp <- tune.splsda.srbct$choice.ncomp$ncomp # optimal number of components based on t-tests on the error rate

ncomp

## [1] 3

select.keepX <- tune.splsda.srbct$choice.keepX[1:ncomp] # optimal number of variables to select

select.keepX

## comp1 comp2 comp3

## 50 40 40

plot(tune.splsda.srbct, col = color.jet(ncomp))
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Based on those tuning results, we can run our final and tuned sPLS-DA model:
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MyResult.splsda.final <- splsda(X, Y, ncomp = ncomp, keepX = select.keepX)

plotIndiv(MyResult.splsda.final, ind.names = FALSE, legend=TRUE,

ellipse = TRUE, title="SPLS-DA, Final result")

Additionally we can run perf for the final performance of the sPLS-DA model. Also note
that perf will output features that lists the frequency of selection of the variables across the
different folds and different repeats. This is a useful output to assess the confidence of your
final variable selection, see a more detailed example here.

6 Extension of Sparse PLS
The two following extenstions of Sparse PLS have been introduced by Liquet et al. (2015).

6.1 Incorporating Group structures within the data
• Natural example: Categorical variables which is a group of dummies variables in a

regression setting.
• Genomics: genes within the same pathway have similar functions and act together in

regulating a biological system.
↪→ These genes can add up to have a larger effect
↪→ can be detected as a group (i.e., at a pathway or gene set/module level).
We consider variables are divided into groups:

• {Example p: SNPs grouped into K genes} {

X = [SNP1, . . . + SNPk︸ ︷︷ ︸
gene1

| SNPk+1, SNPk+2, . . . , SNPh︸ ︷︷ ︸
gene2

| . . . | SNPl+1, . . . , SNPp︸ ︷︷ ︸
geneK

]

}

• Example p: genes grouped into K pathways/modules (Xj = genej)

X = [X1, X2, . . . , Xk︸ ︷︷ ︸
M1

| Xk+1, Xk+2, . . . , Xh︸ ︷︷ ︸
M2

| . . . | Xl+1, Xl+2, . . . , Xp︸ ︷︷ ︸
MK

]

6.2 Aims in regression setting:

• Select group variables taking into account the data structures; all the variables within a
group are selected otherwise none of them are selected

• Combine both sparsity of groups and within each group; only relevant variables within a
group are selected
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6.3 Sparse Models
To understand the different sparse model, we consider here that genes (variables) are grouped
into modules (pathways).
Aim: Select gene expressions.

• sparse PLS

ξ = u1 ×X1 + 0×X2 + u3 ×X3 + · · ·+ up ×Xp

Aim: Select groups of gene expressions.
• group PLS

ξ = u1 ×X1 + u2 ×X2︸ ︷︷ ︸
Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k

Aim: Select group and within-group gene expressions.
• sparse group PLS

ξ = u1 ×X1 + 0×X2︸ ︷︷ ︸
Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k

6.4 Optimisation functions

6.4.1 Sparse PLS: sPLS

Optimisation of the weights
• X-score ξ = Xu, Y-score ω = Yv

argmax
vᵀ

h
vh≤1,uᵀ

h
uh≤1

Cov(Xu,Yv)− λ1‖u‖1

• Sparse PLS

ξ = u1 ×X1 + 0×X2 + u3 ×X3 + · · ·+ up ×Xp

6.4.2 Sparse group PLS: gPLS

Optimisation of the weights
• X-score ξ = Xu, Y-score ω = Yv

argmax
vᵀ

h
vh≤1,uᵀ

h
uh≤1

Cov(Xu,Yv)− λ2

K∑
k=1

‖u(k)‖2

• Group PLS

ξ = 0×X1 + 0×X2︸ ︷︷ ︸
Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k
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6.4.3 Sparse Group PLS: sgPLS

Optimisation of the weights
• X-score ξ = Xu, Y-score ω = Yv

argmax
vᵀ

h
vh≤1,uᵀ

h
uh≤1

Cov(Xu,Yv)− λ1‖u‖1 − λ2

K∑
k=1

‖u(k)‖2

• Sparse Group PLS
ξ = u1 ×X1 + 0×X2︸ ︷︷ ︸

Module 1

+ 0×X3 + 0×X4︸ ︷︷ ︸
Module 2

+ · · ·+ up−1 ×Xp−1 + up ×Xp︸ ︷︷ ︸
Module k

6.5 sparse group subgroup PLS
Taking into account one more layer in the group structure:

• Example: SNP ⊂ Gene ⊂ Pathways
• Longitudinal study

6.5.1 Longitudinal group structures:

This extension to longitudinal group structures has been developped by Sutton, Thiébaut, and
Liquet (2018).

• Time index: genes within the same pathway at the same time index have similar
functions in regulating a biological system.2

G1 = [gene1, . . . , genek
G1T1

| gene1, . . . , genek
G1T2

]

X = [G1T1, G1T2
G1

| G2T1, G2T2
G2

| · · · | G4T1, G4T2
G4

]
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6.5.2 Aims:

• Identify important modules at a group level, important times at a subgroup level and
single genes at an individual level.

6.5.3 sparse group subgroup PLS: sgsPLS

ξ =
Time 1︷ ︸︸ ︷

0×X1 + 0×X2 +
Time 2︷ ︸︸ ︷

0×X1 + 0×X2︸ ︷︷ ︸
Module 1

+ · · ·

+
Time 1︷ ︸︸ ︷

up−1 ×Xp−1 + 0×Xp +
Time 2︷ ︸︸ ︷

0×Xp−1 + 0×Xp︸ ︷︷ ︸
Module k

Optimisation of the weights

• X-score ξh = Xh−1uh, Y-score ωh = Yh−1vh

max
vh, uh

Cov(Xu,Yv)− λ1

K∑
k=1

‖u(k)‖2 − λ2

K∑
k=1

Ak∑
a=1

‖u(k,a)‖2 − λ3‖u‖1

such that vThvh ≤ 1 and uThuh ≤ 1.

6.6 R Package
sgPLS ~ available on CRAN see Liquet, de Micheaux, and Broc (2017)
library(sgPLS)

example("gPLS")

sgsPLS Available now on GITHUB https://github.com/matt-sutton/sgspls
library(devtools)

install_github("matt-sutton/sgspls")

6.7 Big sgPLS
bigsgPLS is an R package that provides an implementation of the two block PLS methods.
The method makes use of bigmemory and matrix algebra by chunks to deal with datasets too
large for R.
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A preliminary paper describing the PLS methods and some of the statistical properties
is avaliable on ArXiv Pre-prints (Lafaye de Micheaux, Liquet, and Sutton 2017) https:
//arxiv.org/abs/1702.07066
library(devtools)

install_github("matt-sutton/bigsgPLS", host = "https://api.github.com")

An example of PLS on the EMNIST dataset is provided here https://github.com/matt-sutton/
bigsgPLS/blob/master/Examples/Example-3-PLS.md
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