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Two words on terminology

Independent variables, covariates, predictors and features are used 

as synonyms (depending on discipline) 

Statistical modelling ≠ machine learning 

Regression vs. classification (purpose) 

Train on: "point or aim something, typically a gun or camera, at" 

—so not as "træne" in Danish! 
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Generalised linear models

A refresher on a classic in parametric statistical modelling



Linear regression models
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Regression equation         

or in matrix notation         

Overall trend                     

yi = β0 + x1β1 + x2β2 + ⋯ + xpβp + εi

y = Xβ + ε

𝔼(Y) = Xβ



Generalised linear models

Extends the linear model to other outcomes and 

distributions. Focus on mean effect but for transformed data 

 

where the link function g maps the population mean into the 

linear predictor.

g(𝔼[Yi]) = β0 + X1iβ1 + ⋯ + Xpiβp
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Estimator in linear regression
The link function  maps the population mean into the linear predictor, and  

maps the linear predictor into the scale of the population mean:  

g g−1

g(𝔼[yi]) = Xiβ ⟺ 𝔼[yi] = g−1(Xiβ)
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Example: logistic regression

N = 2201 individuals on the Titanic. Who survived? 

Binary outcome. Info on class (1st, 2nd, 3rd), sex, age 

group, and survival status. 

log ( P(Y = 1)
P(Y = 0) ) = log ( P(Y = 1)

1 − P(Y = 1) ) = β0 + x1β1 + ⋯ + xpβp
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The ordinary least-squares estimator is 

 

and minimises the least-squared function (residual sum of squares):  

 

What to do when many predictors (large P)?  

We'll come back to this

̂β = (XtX)−1Xty

(y − X ̂β)t(y − X ̂β) = ∥y − Xβ∥2
2
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Cross-validation

Using the same data for fitting/training and optimisation 
leads to overfitting which hurts generalisability to other 
(similar) populations or future observations in the same 

population.



Learning curves
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Error

Epochs/training cycles

Validation error

Training error

Early stopping



Prediction error

Let  be the observed response and  the prediction based 

on a model and predictors . 

Two common choices for quantifying prediction error are: 

yi ̂yi

xi

Continuous outcome: D(y, ̂y) = (y − ̂y)2

Binary outcome: D(y, ̂y) = {1 if y ≠ ̂y
0 if y = ̂y
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Error rates

Let  be a new observation and  the corresponding output of a fixed 

prediction method, then the true error rate is 

 

Because we only have the data already collected, the apparent error rate is 

y0 ̂y0

𝔼[D(y0, ̂y0)]

1
N ∑i D(yi, ̂yi)
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The same data used to train and evaluate the prediction model 

The apparent error rate becomes too small (over-optimistic, biased) 

Evaluation on a validation set not seen during training gives 

unbiased estimate of the model's performance 

Cross-validation obtains validation data from the original data
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Apparent error rate is imperfect



Leave-one-out cross-validation

Intuitive and simple - but compute time can become prohibitive 

1. Drop data point  and train prediction model 

2. Compute prediction error  

3. Repeat 1. and 2. for  

4. Compute the LOO-CV error rate:  

(xi, yi)
D(yi, ̂yi)

i = 1,2,…, N

ErrLOOCV = 1
N ∑i D(yi, ̂yi)
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K-fold cross-validation K ≪ N
1. Partition data into  equal-sized folds 

2. Train prediction model with all but the 'th fold 

3. Compute  

4. Repeat 2. and 3. for  

5. Compute the CV error rate:  

Smaller values of K gives fewer models builds (shorter runtime), groups 

that vary more and, thus, greater variation between prediction models

K
k

D(yk, ̂yk)
k = 1,2,…, K

ErrCV = 1
K ∑k D(yk, ̂yk)

17"Cross-validation Pima"



Variations 
for classifications

Adapted from https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html 18

Validation set

Class

Group/person

4-fold

Stratified 4-fold

Group 4-fold

Time-series split

Training set



Notes of caution on CV

If you use cross-validation to optimise model settings/

hyperparameters, the validation folds become training data 

You can use a split-sample validation scheme:  

80% for development and 20% in hold-out test set 

External validation requires new or distinct data
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Lasso and ridge regression

Flexible (linear) modelling for predictor selection and to 
counter over-fitting. Many non-parametric methods 

exist: tSNE, UMAP, variational auto-encoders (DL), etc.



Wide data (large-p small-n)
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y p1 p2 p3 p4 p5 p6 p7 p8 p9

0 0 1 0 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1 0

1 0 1 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 1 1

E.g. SNPs or deep phenotyping 

Over-parameterised 

Unlikely to generalise well 

Cannot learn patterns/associations 

Similar problem in deep learning



Sparse prediction model
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CURB65 Patient Points

Confusion Yes 1

BUN > 7 mmol/L No 0

RF ≥ 30 No 0

SBP < 90 or DBP ≥ 60 Yes 1

Age ≥ 65 Yes 1

30-day mortality 14 % 3

Bed-side clinical scoring tool that 

can be done by hand 

Less data required, perhaps 

desirable w.r.t. external validation 

High-dimensional propensity 

score models



Computer Age Statistical Inference: Algorithms, Evidence, and Data Science (p. 305) 23

Imagine a linear regression 

BMI = gene1 ⋅ β1 + gene2 ⋅ β2



Assume a linear mean effect:  

The Lasso estimates  by minimising the penalised least-

squares function 

 

so the lasso (= penalised) estimate 

y = Xβ + ε

β

Zn(β) = ∥(y − Xβ)∥2
2 + λn∥β∥1

̂βlasso = arg minβ∈ℝP Zn(β)

Lasso regression (L1 regularisation)
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penalty

l1 norm



Properties of lasso regression

"Always" useful 

( ,  and ) 

Selects sparse model 

Yields accurate predictions

P < N P > N P ≫ N
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Inconsistent variable selection 

Non-standard limiting 

distribution 

No oracle property 

Multiple testing problem



Example: Biopsies from Breast Cancer Patients

Biopsies of breast tumours in 699 patients up to 15 July 1992 with 

binary outcome: benign or malignant. 

There are nine attributes (predictors), each scored between 1 to 

10: clump thickness, uniformity of cell size, uniformity of cell 

shape, marginal adhesion, single epithelial cell size, bare nuclei (16 

values are missing), bland chromatin, normal nucleoli, mitoses.

26"Lasso regression"



Assume again the linear mean effect:  

The Ridge regression estimates  by minimising the 

penalised least-squares function 

 

so the ridge (= penalised) estimate 

y = Xβ + ε

β

Zn(β) = ∥(y − Xβ)∥2
2 + λn∥β∥2

2

̂βridge = arg minβ∈ℝP Zn(β)

Ridge regression (L2 regularisation)
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l2 norm (squared)

penalty
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Lasso and Ridge



Elastic net (L1 and L2)
Combines the sparsity of the lasso with the flexibility of the ridge by 

weighting the contribution of each of them: 

 

The elastic net handles very correlated predictors better than the lasso 

because it does not choose but keeps both with appropriate shrinkage 

This yields two parameters to optimise over:  and 

Zn(β) = ∥(y − Xβ)∥2
2 + αλn∥β∥1 + (1 − α)λn∥β∥2

2

λn α

29"Ridge & elastic models"
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How to choose the penalty?

"Over-fitting biopsy"



Delassoing and selective inference

Lasso yields a list of shrunken parameter estimates  

Which are actually significant? Delassoing is a way to answer this question 

Pick lasso predictors, and use these in normal (G)LM 

Careful! Multiple testing, selection algorithm, bias, lack of small-sample test statistic, ... 

Selective inference computes p-values and CI's for the lasso estimates at fixed value of the 

tuning parameter  

Perhaps better off with a (quasi)causal structure and pick predictors based on that

̂β(1),0, ̂β(3),0,0,…,0, ̂β(k),0,…

λ
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