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Outline of today's topics

8:15�9:30ish � Modeling cultures (Thomas Gerds)

� Model selection
� Decision trees

9:30�15ish � From trees to forests (Mark Knudsen)

� Tuning random forests
� Variable importance
� Interpretable machine
� learning tools
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Software Overview

Outcome

Package Conti-
nuous

Binary Survival Comp.
risks

Method

rpart1 X X X Tree
randomForest2 X X Forest
party3 X X X Tree/Forest
randomForestSRC4 X X X X Forest
ranger5 X X X Forest

1
rpart Therneau, Atkinson and Ripley

2
randomForest Liaw and Wiener (based on Breiman and Cutler)

3
ctree, cforest Hothorn

4
rfsrc Ishwaran

5
ranger Wright and Ziegler
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Targets of analysis: Random forests are used to

▸ predict individual outcome

▸ rank and select variables

in particular in high dimensional settings where the number of
variables exceeds the number of subjects in the dataset.

Example: binary outcome Y

Y =
⎧⎪⎪⎨⎪⎪⎩
1 event

0 no event

Type Prediction Error

Class c = either 0 or 1 Y==c

Probability p= value between 0 and 1 (Y - p)2

Random forest can be an alternative to logistic regression
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The two cultures

L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16
(3):199-215, 2001.
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Example: epo study

Anaemia is a de�ciency of red blood cells and/or hemoglobin and
an additional risk factor for cancer patients.

Randomized placebo controlled trial6: does treatment with epoetin
beta � epo � (300 U/kg) enhance hemoglobin concentration level
and improve survival chances?

Henke et al. 2006 identi�ed the c20 expression (erythropoietin
receptor status) as a new biomarker for the prognosis of
locoregional progression-free survival.

6Henke et al. Do erythropoietin receptors on cancer cells explain
unexpected clinical �ndings? J Clin Oncol, 24(29):4708-4713, 2006.
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Treatment

The study includes 149 7head and neck cancer patients with a
tumor located in the oropharynx (36%), the oral cavity (27%), the
larynx (14%) or in the hypopharynx (23%).

One of the treatments was radiotherapy following

Resection
Complete Incomplete No

Placebo 35 14 25
Epo 36 14 25

7with non-missing blood values
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Outcome

Blood hemoglobin levels were measured weekly during radiotherapy
(7 weeks).

Treatment with epoetin beta was de�ned successful when the
hemoglobin level increased su�ciently. For patient i set

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 treatment successful

0 treatment failed
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Target

Patient no. Treatment successful Predicted probability

1 0 P1

2 0 P2

3 1 P3

4 1 P4

5 0 P5

6 1 P6

7 1 P7

⋅ ⋅ ⋅
⋅ ⋅ ⋅
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Predictors

Age min: 41 y, median: 59 y, max: 80 y
Gender male: 85%, female: 15%
Baseline hemoglobin mean: 12.03 g/dl, std: 1.45
Treatment epo: 50%, placebo 50%
Resection complete: 48%, incomplete: 19%,

no resection: 34%
Epo
receptor status neg: 32%, pos: 68%
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Logistic regression

Response: treatment successful yes/no

Factor OddsRatio StandardError CI.95 pValue

(Intercept) 0.00 4.01 � < 0.0001
Age 0.97 0.03 [0.91;1.03] 0.2807

Sex:female 4.71 0.84 [0.91;26.02] 0.0657

HbBase 3.25 0.27 [1.99;5.91] < 0.0001
Treatment:Epo 90.92 0.76 [23.9;493.41] < 0.0001
Resection:Incompl 1.75 0.81 [0.36;9.03] 0.4924

Resection:Compl 4.14 0.69 [1.13;17.36] 0.0395

Receptor:positive 5.81 0.66 [1.72;23.39] 0.0076

Does that mean everyone should be treated?
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The model provides information for a single patient

For example: the predicted probability that a 51 year old man with
complete tumor resection and baseline hemoglobin level 12.6 g/dl
reaches the target hemoglobin level (Yi=1) is

Epo treatment: 97.4%

Placebo group: 29.2 %

If a similar patient has baseline hemoglobin level 14.8 g/dl then the
model predicts:

Epo treatment: 99.8%

Placebo group: 84.7 %
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Model selection

Very many di�erent 'logistic regression models' can be constructed
by selecting subsets of variables, transformations, and interactions
of variables.

"Standard" multiple (logistic) regression works if

▸ the number of predictors is not too large, and substantially
smaller than the sample size

▸ the decision maker has a-priory knowledge about which
variables to put into the model

Ad-hoc model selection algorithms, like automated backward
elimination, do not lead to reproducible prediction models.
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Backward elimination
On full data (n=149):

library(rms)

full <- lrm(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=Epo)
fastbw(full)

bw <- lrm(Y∼sex+HbBase+Treat+Receptor,data=Epo)

Deleted Chi-Sq d.f. P Residual d.f. P AIC

age 1.16 1 0.2807 1.16 1 0.2807 -0.84

Resection 3.75 2 0.1532 4.92 3 0.1781 -1.08

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P

Intercept -11.257 3.0129 -3.736 0.00018665428

sex=male -1.672 0.8221 -2.034 0.04195853231

HbBase 1.099 0.2719 4.043 0.00005279348

Treat=Placebo -3.843 0.6992 -5.496 0.00000003887

Receptor=positive 1.413 0.6355 2.224 0.02615849462

Factors in Final Model

[1] sex HbBase Treat Receptor
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Backward elimination
On reduced data (n=130):

library(rms)

set.seed(17)

Epo17 <- Epo[sample(1:149,replace=FALSE,size=130),]

sub <- lrm(Y∼age+sex+HbBase+Treat+Resection+Receptor,
data=Epo17)

fastbw(sub)

subbw <- lrm(Y∼sex+Receptor+HbBase+Treat, data=Epo17)

Deleted Chi-Sq d.f. P Residual d.f. P AIC

age 0.61 1 0.4362 0.61 1 0.4362 -1.39

Resection 4.81 2 0.0905 5.41 3 0.1440 -0.59

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P

Intercept -11.657 3.2936 -3.539 0.000401291

sex=male -1.692 0.8643 -1.958 0.050277808

HbBase 1.127 0.2954 3.816 0.000135846

Treat=Placebo -3.370 0.6971 -4.833 0.000001343

Receptor=positive 1.311 0.6639 1.974 0.048333452

Factors in Final Model

[1] sex HbBase Treat Receptor
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Predicted chance of treatment success for a new patient

newpatient

age sex HbBase Treat Resection Receptor

1 48 male 10.8 Epo No negative

library(riskRegression)

pfull=predictRisk(full,newdata=newpatient)

pbw=predictRisk(bw,newdata=newpatient)

psubbw=predictRisk(subbw,newdata=newpatient)

# table results

res=cbind(round(100*c(pfull,pbw,psubbw),1))

rownames(res)=c("Full model","BW all data","BW subset")

colnames(res)=c("Predicted chance (%)")

res

Predicted chance (%)

Full model 16.9

BW all data 24.1

BW subset 47.8
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Exercise

Load the Epo data:

Epo <- read.csv("http://publicifsv.sund.ku.dk/∼helene/
Epo.csv", stringsAsFactors=TRUE)

Epo data set is ready for analysis

▸ Choose your favorite seed to generate a subsample (n=130) of
the Epo data

▸ Run backward elimination with function rms::fastbw

▸ Predict the outcome for the following new patient

newpatient <- read.csv("http://publicifsv.sund.ku.dk/∼
helene/newpatient", stringsAsFactors=TRUE)

▸ Report the selected variables and the predicted risk
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Decision trees
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A Conversation of Richard Olshen with Leo Breiman

. . .

Olshen: What about arcing, bagging

and boosting?

Breiman: Okay. Yeah. This is

fascinating stu�, Richard. In the last

�ve years, there have been some really

big breakthroughs in prediction. And I

think combining predictors is one of

the two big breakthroughs. And the

idea of this was, okay, that suppose

you take CART, which is a pretty

good classi�er, but not a great

classi�er. I mean, for instance, neural

nets do a much better job.

Olshen: Well, suitably trained?

Breiman: Suitably trained.

Olshen: Against an untrained

CART?

Breiman: Right. Exactly. And I think

I was thinking about this. I had

written an article on subset selection

in linear regression. I had realized

then that subset selection in linear

regression is really a very unstable

procedure. If you tamper with the

data just a little bit, the �rst best �ve

variable regression may change to

another set of �ve variables. And so I

thought, �Okay. We can stabilize this

by just perturbing the data a little

and get the best �ve variable

predictor. Perturb it again. Get the

best �ve variable predictor and then

average all these �ve variable

predictors.� And sure enough, that

worked out beautifully. This was

published in an article in the Annals

(Breiman, 1996b).

. . .
Statist. Sci. Volume 16, Issue 2 (2001), 184-198.
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Conditional inference trees are not very deep (by default)
library(party)

plot(ctree(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=
Epo))

Treat
p < 0.001

1

Placebo Epo

Resection
p = 0.043

2

{No, Incompl} Compl

Node 3 (n = 39)
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1
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A deeper more greedy tree

library(party)

plot(ctree(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=
Epo,controls=ctree_control(mincriterion = .01)))
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Classi�cation trees

A tree model is a form of recursive partitioning.

It lets the data decide which variables are important and where to
place cut-o�s in continuous variables.

In general terms, the purpose of the analyzes via tree-building
algorithms is to determine a set of splits that permit accurate
prediction or classi�cation of cases.

In other words: a tree is a combination of many medical tests.
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Roughly, the algorithm works as follows:

1. Find the predictor so that the best possible split on that
predictor optimizes some statistical criterion over all possible
splits on the other predictors.

2. For ordinal and continuous predictors, the split is of the form
X < c versus X ≥ c .

3. Repeat step 1 within each previously formed subset.

4. Proceed until fewer than k observations remain to be split, or
until nothing is gained from further splitting, i.e. the tree is
fully grown.

5. The tree is pruned according to some criterion.
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Characters of classi�cation trees

▸ Trees are speci�cally designed for accurate
classi�cation/prediction

▸ Results have a graphical representation and are easy to
interpret

▸ No model assumptions

▸ Recursive partitioning can identify complex interactions

▸ One can introduce di�erent costs of miss-classi�cation in the
three

But:

▸ Trees are not robust against even small perturbations of the
data.

▸ It is quite easy to over-�t the data.

▸ Trees are weak learners
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Random forests
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Outline of today's remaining topics

8:15�9:30ish � Modeling cultures (Thomas Gerds)

� Model selection
� Decision trees

9:30�15ish � From trees to forests (Mark Knudsen)

� Tuning random forests
� Variable importance
� Interpretable machine
� learning tools
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From trees to forests

Decision trees are nice because:

▸ They produce results that are easy to interpret

▸ They require no model assumptions

But:

▸ They easily over�t the data

▸ Trees are weak learners

A random forest is a machine learning method that combines a
large collection of decision trees to construct a strong learner
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Machine learning versus classical statistics

When does it make sense to apply "machine learning"?

▸ Little knowledge of the system we wish to analyze

▸ No prespeci�ed hypotheses

▸ Focus on prediction rather than understanding
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Why do we need prediction in medical research? (Ex. 1)

Combined test at 12-week pregnancy scan

▸ the age of the mother, a blood sample and a measurement of
fetus' neck are combined to provide a prediction of the risk of
the baby having Down's syndrome, Edwards' syndrome or
Patau's syndrome

▸ those with higher-risk results can have a subsequent diagnostic
test that can tell for sure if the baby has Down's syndrome,
Edwards' syndrome or Patau's syndrome but can in rare cases
cause miscarriage

32 / 128



Why do we need prediction in medical research? (Ex. 2)

Early detection of diabetic retinopathy

▸ Diabetic retinopathy is a leading cause of blindness

▸ Diabetic retinopathy may go unnoticed until it is too late for
e�ective treatment

▸ A prediction model based on fundus photography data can
help detect patients with diabetic retinopathy in time for
e�ective therapeutic intervention
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Why do we need prediction in medical research? (Ex. 3)

Prediction of long-term survival after esophagectomy

▸ Esophagectomy is a highly invasive surgical treatment

▸ A prediction model can combine multiple risk factors to
provide personalized survival predictions

▸ This can further enable identi�cation of high-risk patients for
enhanced surveillance and/or treatment intensi�cation
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Why do we need prediction in medical research? (Ex. 4)

Cancer class classi�cation

▸ Accurate cancer classi�cation can be used to target speci�c
therapies to distinct tumor types

▸ A prediction model can be used to provide a data-based
classi�cation algorithm based on gene expression monitoring8

8this is where we will end today, using a random forest (n = 38, p = 3051)
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What else can we use a random forest for? (Ex. 5)

Identifying risk factors for survival in systolic heart failure patients

▸ Random forests automatically detects non-linear relationships
and interactions among variables

▸ Can be used for variable selection even in settings with many
more predictors than observations

▸ We lose the "usual" statistical inference but can explore
e�ects on prediction with graphical tools
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Random forests as a classical machine learning method

1. Let's try to understand what goes on inside the forest
▸ Recap on basic machine learning techniques

2. Applying random forests
▸ Hyperparameter selection/tuning

3. Interpretability of random forests9

▸ Variable importance
▸ Partial Dependence Plots (PDPs)

9(and machine learning in general)
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From trees to forests
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From trees to forests

What is a forest10 . . .

A random forest combines the information from a collection of
weak learners = randomized decision trees

1. Each tree is built on a bootstrap sample of the data

2. Only a small number of randomly selected predictor variables
are used to �nd the best split of each node

The forest predictions are averages over the individual trees

10Leo Breiman (2001). "Random Forests". Machine Learning 45 (1), 5-32,
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning
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Trees are built on bootstrapped subsamples of the data

The purpose of bootstrapping is to create new pseudo samples,
each of which will be used to �t a tree

full data

bootstrap sample

random
draw

bootstrap sample

random
draw

bootstrap sample

random
dddraw
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Trees are built on bootstrapped subsamples of the data

Each time we draw a random bootstrap sample:

bootstrap OOB

full data

random

inbag : subjects in the bootstrap sample

oob : subjects not in the bootstrap sample
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Bootstrapping

Epo <- read.csv("http://publicifsv.sund.ku.dk/∼helene/
Epo.csv", stringsAsFactors=TRUE)

There are n = 149 subjects in the Epo data

n <- nrow(Epo)

Let's get a bootstrap sample (of same size) of these subjects

43 / 128



Bootstrapping

Everything depends on the seed:

set.seed(5)

We draw a bootstrap sample of size n:

bootstrap.sample <- sample(1:n, n, replace=TRUE)

Who is included in the bootstrap sample (look at �rst six)?

head(table(bootstrap.sample))

bootstrap.sample

2 3 4 5 6 8

1 1 3 1 1 3
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Bootstrapping

Is subject i = 15 in this bootstrap sample?

15 %in% bootstrap.sample

[1] TRUE

Is subject i = 15 inbag or oob (out-of-bag)?
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Bootstrapping

Each time a patient is left oob, we can compare the prediction for
this patient with the outcome that was observed for sample patient

▸ model validation (which we get back to)

▸ variable importance measures (which we get back to)
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning

47 / 128



Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning

47 / 128



A tree is a nearest neighbor method

Say we only have access to two predictors of the Epo dataset:

age HbBase

1 70 10.7

2 68 12.7

3 70 13.4

4 55 12.0

5 69 11.2

6 59 13.5

We want to estimate the probability:

P(Y = 1 ∣ age,HbBase)
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A tree is a nearest neighbor method

In the following, I have cheated

I have simulated data to imitate the Epo data

So I know the true P(Y = 1 ∣ age,HbBase)
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A tree is a nearest neighbor method
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A tree is a nearest neighbor method

Grow a tree to �t P(Y = 1 ∣ age,HbBase)
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning
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A forest is a weighted nearest neighbor method

A forest takes the nearest neighbors from each tree (new tree, new
seed, new bootstrap sample) to de�ne "weighted nearest
neighbors"
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A forest is a weighted nearest neighbor method

Now, combine trees to �t P(Y = 1 ∣ age,HbBase)
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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Random trees and forests in R

Load the package:

library("randomForestSRC")

We will start by using the software to grow single trees

tree1 <-

rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo, # data

ntree=1, # only 1 tree!

seed=1) # the result depends on seed
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Random trees and forests in R

Prediction and the oob prediction, e.g., for individual i = 89:
tree1$predicted[89]

[1] 0.7777778

tree1$predicted.oob[89]

[1] NA

. . . individual i = 89 was inbag
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Exercise: From trees to forests

In this exercise, we will use the rfsrc() function from the
randomForestSRC package to grow single trees

▸ The point is to assess stability of tree and forest predictions

The exercise is described in day3-practical.pdf

▸ Exercise 1: From trees to forests
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Exercise: From trees to forests (result plot)

M <- 1000

pred <- rep(0, M)

for (ii in 1:M) {

tree1 <- rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo, ntree=1, seed=ii)

pred[ii] <- tree1$predicted.oob[25]

}

pred.mean <- sapply(1:M, function(ii) {

mean(na.omit(pred[1:ii]))

})
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Exercise: From trees to forests (result plot)

plot(pred.mean)
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Exercise: From trees to forests (remark)

Here we produced the forest prediction ourselves across an
increasing number of trees

In real life we use the implementation in R to do this automatically.
Here we use 1000 trees by specifying the argument ntree=1000:

rf1 <- rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo, ntree=1000, seed=5)

This gives us directly the forest prediction:

rf1$predicted.oob[25]

[1] 0.7528273
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Prediction accuracy

Measuring and comparing performances of machine
learning models

61 / 128



Predictive accuracy

Combined test at 12-week pregnancy scan

▸ accurate prediction is important to avoid recommending
unneeded invasive subsequent diagnostic test

Early detection of diabetic retinopathy

▸ accurate prediction is important to discover as many patients
as possible in time for e�ective treatment

Prediction of long-term survival after esophagectomy

▸ accurate prediction is important to correctly identify and
attend to as many high-risk patients as possible
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Predictive accuracy

Patient no. Treatment successful Predicted probability

1 0 P1

2 0 P2

3 1 P3

4 1 P4

5 0 P5

6 1 P6

7 1 P7

⋅ ⋅ ⋅
⋅ ⋅ ⋅
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Prediction error and predictive accuracy

Prediction error is measured in terms of some distance11 between:

1) the observed outcome: Yi

2) and the predicted probability: P̂i = P̂(Yi = 1 ∣ agei ,HbBasei , ...)

One example of a loss function is the squared error loss:

L (Yi , P̂i) = (Yi − P̂i)2

11Measured in terms of a loss function
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Prediction error and predictive accuracy

Machine learning 101

To measure the prediction error correctly, we cannot train the
model and assess the model on the same data
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Prediction error and predictive accuracy

Over�tting happens when a model learns the detail and noise in the
data too well so that it negatively impacts the performance of the
model on new data
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Prediction error and predictive accuracy

To do it correctly, we can use sample splitting:

1. I create and �t my model on the training data: P̂train

2. I check the quality of my model on the validation data
▸ Average of L (Yi , P̂

train

i ) in validation sample
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Prediction error and predictive accuracy

Let's compare the predictions from 1 tree to those
from a forest of 100 trees

Fix seed:

set.seed(5)

Take 10 % of original data to be our validation set:

val.set <- sample(1:n, n/10, replace=FALSE)

The rest comprise our training data:

train.set <- (1:n)[!(1:n) %in% val.set]
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Prediction error and predictive accuracy

Fit 1 tree on the training data:

tree1.train <-

rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo[train.set,],

ntree=1, seed=1)

Fit a forest of 100 trees on the training data:

forest.train <-

rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo[train.set,],

ntree=100, seed=1)
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Prediction error and predictive accuracy

Predict from the tree model on the validation set:

tree1.val <- predict(tree1.train,

newdata=Epo[val.set,],

type="response")$predicted

Predict from the forest model on the validation set:

forest.val <- predict(forest.train,

newdata=Epo[val.set,],

type="response")$predicted
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Prediction error and predictive accuracy

We de�ne the loss function:

loss.fun <- function(Y, Phat) mean((Y-Phat)^2)

Now we can compare performance:

print(rbind(

"1 tree " = loss.fun(Epo[val.set, ]$Y, tree1.val),

"forest " = loss.fun(Epo[val.set, ]$Y, forest.val))

)

[,1]

1 tree 0.1443149

forest 0.0726101

Which one seems to perform best?
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Prediction error and predictive accuracy

In practice, the splitting of data is not done once

. . . but several times. This is called V -fold cross-validation
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Prediction error and predictive accuracy

In practice, the splitting of data is not done once

. . . but several times. This is called V -fold cross-validation
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Prediction error and predictive accuracy

The same technique is used inside the forest!

▸ The oob prediction for
patient i only uses the trees
built on boostrap samples
where patient i was left oob

bootstrap OOB

full data

random

▸ The oob prediction error is
estimated by:

êrroroob =
1

n

n

∑
i=1

L (Yi , P̂
oob

i )
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Prediction error and predictive accuracy

rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo, ntree=100, seed=1)

Sample size: 149

Number of trees: 100

Forest terminal node size: 5

Average no. of terminal nodes: 12.85

No. of variables tried at each split: 2

Total no. of variables: 5

Resampling used to grow trees: swor

Resample size used to grow trees: 94

Analysis: RF-R

Family: regr

Splitting rule: mse *random*

Number of random split points: 10

% variance explained: 58.37

Error rate: 0.1
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Prediction error and predictive accuracy

Consider the oob predicted errors for a number of di�erent forests:

[,1]

1 tree performance 0.2455492

forest (5 trees) 0.1528393

forest (10 trees) 0.1254213

forest (50 trees) 0.1075489

forest (100 trees) 0.1034025

forest (150 trees) 0.1064458

forest (200 trees) 0.1060658

forest (500 trees) 0.1054694

forest (1000 trees) 0.1039286
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Picking the random forest model

Hyperparameter tuning
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Picking the random forest model

The random forest algorithm automatically detects nonlinear
e�ects, complex interactions, . . .
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Picking the random forest model

But the algorithm involves some choices: hyperparameters!

▸ These can be tuned and lead to di�erent results

▸ These can be tuned to optimize predictive performance
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There are a lot of di�erent choices involved in the algorithm

Data lala laData

OOB 1 OOB 1 OOB 1OOB 1 OOB b OOB B

Bootstrap 1 Bootstrap 1 Bootstrap 1Bootstrap 1 . . . Bootstrap b . . . Bootstrap B

mtry nodesize Splitrules

Tree 1 Tree 1 Tree 1Tree 1 . . . Tree b . . . Tree B

Prediction
hej heVariable

importance

hej HPrediction
error

Data lala laData

OOB 1 OOB 1 OOB 1OOB 1 OOB b OOB B

Bootstrap 1 Bootstrap 1 Bootstrap 1Bootstrap 1 . . . Bootstrap b . . . Bootstrap B

mtry nodesize Splitrules

Tree 1 Tree 1 Tree 1Tree 1 . . . Tree b . . . Tree B

Prediction
hej heVariable

importance

hej HPrediction
error
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Hyperparameters of the random forest

ntree the number of trees

mtry only mtry randomly selected predictor variables are
used to �nd the best split ("split-variable
randomization")

nodesize is connected to the depth of each tree; it speci�es the
minimum number of observations that must be
remain to perform a split

Treat
p < 0.001

1

Placebo Epo

Resection
p = 0.043

2

{No, Incompl} Compl

Node 3 (n = 39)

1
0

0

0.2

0.4

0.6

0.8

1

HbBase
p = 0.309

4

≤ 12.1 > 12.1

Node 5 (n = 25)

1
0

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 10)

1
0

0

0.2

0.4

0.6

0.8

1

HbBase
p < 0.001

7

≤ 11.3 > 11.3

Node 8 (n = 19)

1
0

0

0.2

0.4

0.6

0.8

1

Resection
p = 0.641

9

{Incompl, Compl} No

Receptor
p = 0.527

10

positive negative

Node 11 (n = 27)

1
0

0

0.2

0.4

0.6

0.8

1
Node 12 (n = 11)

1
0

0

0.2

0.4

0.6

0.8

1
Node 13 (n = 18)

1
0

0

0.2

0.4

0.6

0.8

1

80 / 128



Applying a random forest

library("randomForestSRC")

rfsrc(formula,

dataset,

seed = 5,

ntree = 1000, # how many trees

mtry = 3, # number of randomly selected

# variables as candidates for

# splitting a node

nodesize = 5) # how many unique data points

# in each terminal node
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Applying a random forest

We �t a random forest model on the Epo data with 1000 trees,
mtry=3 and nodesize=3:

rf1 <- rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo,

seed = 5,

nodesize = 3,

mtry = 3,

ntree = 1000)
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Applying a random forest

Look at predictions (here �rst 5):

rf1$predicted.oob[1:5]

[1] 0.029569892 0.042219020 0.971616712 0.984539768 0.004933333

The oob prediction for patient 25:

rf1$predicted.oob[25]

[1] 0.7713155

Compare to what was observed for this patient:

Epo[25, "Y"]

[1] 1
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Predictions on new data

newpatient

age sex HbBase Treat Resection Receptor

1 48 male 10.8 Epo No negative
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Predictions on new data

Make predictions for this patient:

rf.pred.new <- predict(rf1, newdata=newpatient)

rf.pred.new$predicted

[1] 0.5763333
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Exercise: Get predictions for newpatient

In this exercise, we will use the rfsrc() function from the
randomForestSRC package to get forest prediction for newpatient
for di�erent values of hyperparameters

▸ The point is to see how sensitive the forest predictions are to
the choice of hyperparameters

The exercise is described in day3-practical.pdf

▸ Exercise 2: Get predictions for newpatient
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Exercise: Get predictions for newpatient

nodesize = 1 nodesize = 3 nodesize = 5 nodesize = 10

ntree =
 1

ntree =
 50

ntree =
 100

ntree =
 1000

m
try

 =
 1

m
try

 =
 2

m
try

 =
 3

m
try

 =
 6

m
try

 =
 1

m
try

 =
 2

m
try

 =
 3

m
try

 =
 6

m
try

 =
 1

m
try

 =
 2

m
try

 =
 3

m
try

 =
 6

m
try

 =
 1

m
try

 =
 2

m
try

 =
 3

m
try

 =
 6

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

pr
ed

ic
tio

n 
(n

ew
pa

tie
nt

)

87 / 128



Tuning hyperparameters

Let's tune the random forest = pick hyperparameters that optimize
predictive accuracy

Look at the estimated error rate across the di�erent choices of
hyperparameters in the exercise:

[,1]

forest (ntree=50) 0.1229789

forest (ntree=100) 0.1225639

forest (ntree=1000) 0.1182131

forest (nodesize=3) 0.1097429

forest (nodesize=5) 0.1055143

forest (mtry=1) 0.1247416

forest (mtry=6) 0.1218394

Which one is the best one?
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Tuning hyperparameters

Tuning a model is tedious work . . . there are lot of possible
combinations of the parameters
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Tuning hyperparameters

Propose (relevant) combinations of values for mtry, nodesize and
ntree:

hyper.grid <- expand.grid(

mtry = floor((ncol(Epo)-1)/c(4,3,2,1)),

nodesize = c(1,3,5,10),

ntree=c(5, 50, 100, 1000),

oob.error = NA

)
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Tuning hyperparameters

mtry nodesize ntree

49 1 1 1000

50 2 1 1000

51 3 1 1000

52 6 1 1000

53 1 3 1000

54 2 3 1000

55 3 3 1000

56 6 3 1000

57 1 5 1000

58 2 5 1000

59 3 5 1000

60 6 5 1000

61 1 10 1000

62 2 10 1000

63 3 10 1000

64 6 10 1000
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Tuning hyperparameters

Compute the oob error for all combinations:

for (j in 1:nrow(hyper.grid)) {

tmp.forest <-

rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo,

mtry=hyper.grid[j, "mtry"],

nodesize=hyper.grid[j, "nodesize"],

ntree=hyper.grid[j, "ntree"], seed=1)

hyper.grid[j, "oob.error"] <-

loss.fun(Epo$Y, tmp.forest$predicted.oob)

}
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Tuning hyperparameters
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Tuning hyperparameters

Which combination gave the lowest estimated error rate?

hyper.grid[which.min(hyper.grid$oob.error), ]

mtry nodesize ntree oob.error

58 2 5 1000 0.1055467
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Tuning hyperparameters

Let's �t the corresponding, now tuned, forest:

j <- which.min(hyper.grid$oob.error)

j

[1] 58

tuned.rf <-

rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo,

mtry=hyper.grid[j, "mtry"],

nodesize=hyper.grid[j, "nodesize"],

ntree=hyper.grid[j, "ntree"], seed=1)
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Tuning hyperparameters for the simulated data
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Tuning hyperparameters for the simulated data
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Interpretable machine learning

Variable importance
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Logistic regression

Response: treatment successful yes/no

Factor OddsRatio StandardError CI.95 pValue

(Intercept) 0.00 4.01 � < 0.0001
Age 0.97 0.03 [0.91;1.03] 0.2807

Sex:female 4.71 0.84 [0.91;26.02] 0.0657

HbBase 3.25 0.27 [1.99;5.91] < 0.0001
Treatment:Epo 90.92 0.76 [23.9;493.41] < 0.0001
Resection:Incompl 1.75 0.81 [0.36;9.03] 0.4924

Resection:Compl 4.14 0.69 [1.13;17.36] 0.0395

Receptor:positive 5.81 0.66 [1.72;23.39] 0.0076
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Machine learning
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Interpretable machine learning

▸ Decision trees produce results that are easy to interpret

▸ Random forest results, on the other hand, are not per se so
easy to interpret

▸ What predictor variables were important for the prediction?

▸ What e�ect did the predictor variables have on the prediction?
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Variable importance

How important was a given variable for building the forest model?

We consider two di�erent approaches

1. "VIMP"

2. Minimal depth
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Variable importance - VIMP

VIMP (Variable IMPortance) is measured by the di�erence
prediction error between:

▸ running the forest with a �noised-up� version of X

▸ running the forest with X as was observed

If prediction performance decreases more for variable X1 than for
variable X2, then importance(X1) > importance(X2)

102 / 128



Variable importance - Minimal depth

Recall:

▸ Trees are built by recursive partitioning

▸ They let the data decide which variables are important for
splitting node
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Variable importance - Minimal depth

The minimal depth is the average distance from the root node to
the �rst split on a speci�c variable
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The smaller the minimal depth, the more important is the variable
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Variable importance - VIMP in R

VIMP for the Epo data:

tuned.rf <- rfsrc(Y∼age+sex+HbBase+Treat+
Resection,

Epo,

mtry=hyper.grid[j, "mtry"],

nodesize=hyper.grid[j, "nodesize"],

ntree=hyper.grid[j, "ntree"],

seed=1,

importance=TRUE) # compute vimp

tuned.rf$importance

age sex HbBase Treat Resection

0.07420322 0.00589100 0.23239730 0.36622336 0.02681411

What variables are most important?
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Variable importance - VIMP in R

plot(tuned.rf)
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Variable importance - VIMP in R

Minimal depth for the Epo data:

age sex HbBase Treat Resection

1.550 3.688 1.300 0.992 2.072

The forest provides a threshold (cut-o�) value:

[1] 2.343143

What variables are important?
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Variable importance

What you should not do. . .

rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,
... ,

mtry = 1, # <-- nooo

... )

mtry=1:
mtry1

age 1.688

sex 2.017

HbBase 1.697

Treat 1.867

Resection 1.903

Threshold=

[1] 2.051348

mtry=2:
mtry2

age 1.550

sex 3.688

HbBase 1.300

Treat 0.992

Resection 2.072

Threshold=

[1] 2.343143
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Variable importance
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Variable importance
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Variable importance measures from random forests

Why is this?

mtry controls split-variable randomization:

▸ for each node only a small number of randomly selected
predictors are used to �nd the best split of that node (= mtry)

▸ this is done as part of the randomization of trees

▸ (it ensures some of the theoretical properties of the forests)

In fact, if we are interested in variable importance (rather than
predictive accuracy) we should choose a high value for this.
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Variable importance on simulated data

▸ Two uncorrelated variables x1 and x2 with the same e�ect

▸ One variable c1 correlated with x1 but with no e�ect

▸ Two correlated variables z1 and z2 with the same e�ect

▸ Ten noise variables w1,. . . , w10

x1 <- runif(n)

x2 <- runif(n)

z1 <- rnorm(n, mean=0, sd=0.3)

z2 <- rnorm(n, mean=z1+0.1, sd=0.3)

c1 <- rnorm(n, mean=x1+0.1, sd=0.3)

w <- matrix(runif(n*10), ncol=10)

y <- rnorm(n, mean=0.1+2.5*x1+2.5*x2+2.5*z1+2.5*z2)
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Variable importance on simulated data

rf.sim <- rfsrc(y∼x1+x2+c1+z1+z2+
w1+w2+w3+w4+w5+w6+w7+w8+w9+w10,

sim.data,

seed=3, ntree=1000,

importance=TRUE)
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Variable importance on simulated data

▸ Two uncorrelated variables x1 and x2 with the same e�ect

▸ One variable c1 correlated with x1 but with no e�ect

▸ Two correlated variables z1 and z2 with the same e�ect

▸ Ten noise variables w1,. . . , w10
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Exercise: Identifying risk factors with variable importance

In this exercise we will look at the analysis of Hsich et al. (2011):

The exercise is described in day3-practical.pdf

▸ Exercise 3: Identifying risk factors
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E�ects of predictor variables on the �nal prediction

Plots can be useful to assess the e�ect of predictor variables on the
�nal prediction

. There are di�erent ways to do so:

Partial Dependence Plots (PDPs)

▸ Average forest predictions as a function of predictor variables

▸ Obtained by marginalizing the forest prediction over the other
features/covariates

▸ Can show if the relationship is linear, monotonic or more
complex

Individual Conditional Expectation (ICE) plots

▸ Looking at the individual predictions as a function of predictor
variables
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Partial Dependence Plots (PDPs)

Say, we want to know how

P̂(Y = 1 ∣ age,Gender,HbBase,Treatment,Resection)

varies when HbBase varies

We can estimate this by:

P̂HbBase(b) = 1

n

n

∑
i=1

P̂(Yi = 1 ∣ agei ,Genderi ,HbBase = b,
Treatmenti ,Resectioni)

▸ We marginalize the forest prediction over the other
features/covariates
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Partial Dependence Plots (PDPs)

In R, we can plot these estimates for all variables by simply writing:

plot.variable(tuned.rf, partial=TRUE, plots.per.page=3)
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Partial Dependence Plots (PDPs)
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Partial Dependence Plots (PDPs)
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It is clear that the random forest captures a highly nonlinear e�ect
of age on the predicted probability!
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Individual Conditional Expectation (ICE) plots

The ICE plot shows the variation of

P̂i
HbBase(b) = P̂(Y = 1 ∣ agei ,Genderi ,HbBase = b,

Treatmenti ,Resectioni)

for each individual i one by one

▸ This can very useful if there are interactions

▸ Do the curves follow the same course (e.g., changepoints,
linearity, etc) for all individuals?
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Individual Conditional Expectation (ICE) plots

ICE plot for HbBase
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Individual Conditional Expectation (ICE) plots

ICE plot for HbBase, colored by Treat
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Individual Conditional Expectation (ICE) plots

PDP plot for HbBase, computed in groups de�ned by Treat
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Individual Conditional Expectation (ICE) plots

ICE plot for age
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Individual Conditional Expectation (ICE) plots

ICE plot for age, colored by Treat
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Interpretable machine learning

Variable importance measures can tell us what variables seem
important for prediction

▸ Beware of correlated predictors

PDPs and ICE plots can show us how predicted probabilities vary
as a function of predictor values

▸ PDPs show the average variation
▸ Beware of hidden interactions

▸ ICE show the individual variations
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Logistic regression versus

random forests
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Logistic regression versus random forests

When utilizing a logistic regression approach:

▸ We must specify the model12

P̂(Y = 1 ∣ age,Gender,HbBase,Treatment,Resection,Epo)
= expit(β0 + β1age + β2age ∶ female +⋯) (∗)

Based on the model we may:

▸ Predict P̂(Y = 1) for a new patient

▸ Interpret odds ratios, conditional on holding the other features
�xed (p-values, con�dence intervals, etc)

But all inference relies on (∗) being correct and prespeci�ed.

12Interactions, quadratic terms (e.g., age2), . . .
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Logistic regression versus random forests

When utilizing a random forest approach:

▸ The forest automatically detects nonlinear e�ects and complex
interactions

▸ "Model selection" is comprised by hyperparameter tuning

Based on the model we may:

▸ Predict P̂(Y = 1) for a new patient often with high accuracy

▸ Obtaining interpretable measures from the random forest13 is
applied after model training, e.g.:
▸ Variable importance, PDPs, ICEs, . . .

But, inference (con�dence intervals, p-values) is not so obvious.

And, beware that everything depends on the random seed.

13And other machine learning methods
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Exercise: Predicting tumor class (Golub et al., 1999)

▸ Accurate cancer classi�cation can be used to target speci�c
therapies to distinct tumor types

▸ We could use a random forest model to provide a data-based
classi�cation algorithm based on gene expression monitoring
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Exercise: Predicting tumor class (Golub et al., 1999)

In this practical we will work with a dataset containing information
on 38 tumor mRNA samples from 38 individuals and the gene
expression values from 3051 genes

We will go through the steps on the lectures slides to explore these
data

▸ The goal of the analysis is to predict the tumor class

The exercise is described in day3-practical.pdf

▸ Exercise 4: Predicting tumor class
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That was it . . .

Comments and suggestions for this material are very much welcome
at mark.bech.knudsen@sund.ku.dk ,
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