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Practicalities

Every day from 8.15 to 15 in room 7.0.08/7.0.18/35.3.13

Internet access: eduroam or KU-guest

R

Breaks as we go along

Please read before classes
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�. Multiple testing, dimension

reduction, randomization tests

�. High-dimensional data,

penalized regression,

bootstrap, cross-validation

�. Classi�cation/regression tress,

random forests

�. Multiple imputation

techniques

web.stanford.edu/~hastie/CASI/

Course overview

3

https://web.stanford.edu/~hastie/CASI/


Data sizes. The  problemN ≪ P
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The "Big Data" revolution

�. "Big  small " problem with many modern large-scale-datasets:

registers, images, *-omics, ...

�. Need to reduce the dimension in some way

�. How do we evaluate signi�cance when we have used the data for

feature selection?

�. Multiple testing becomes an issue --- not just for high-dimensional

data

P N
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Manhattan plot

6



Multiple comparison problems

Errors committed when testing a single null hypotheses, 

Analysis result H0 true H0 false

Reject α 1-β

Don't reject 1-α β

 is the signi�cance level

 is the power

H0

α

1 − β
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Multiple comparison problems

�e family-wise error rate (FWER) is the probability of making at least

one type I error (false positive).

For  tests we have

where the third equality only holds under independence, but the

inequality holds due to Boole’s inequality.

m

FWER = P(∪(pi ≤ α))) = 1 − P(no false positives) = 1 − (1 − α)m ≤ mα
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Multiple comparison problems

Number of errors committed when testing  null hypotheses.

Analysis result H_0 true H_0 false Total

Reject V S R

Don't reject U T m-R

Total m

Here , the number of rejected hypotheses/discoveries. , ,  and 

are unobserved. �e FWER is

m

m0 m − m0

R V S U T

FWER = P(V > 0) = 1 − P(V = 0)
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Bonferroni correction

�e most conservative method but is free of dependence and

distributional assumptions.

So set the signi�cance level for each individual test at .

In other words we reject the th hypothesis if

FWER = 1 − P(V = 0) = 1 − (1 − α)m ≤ mα

α/m

i

mpi ≤ α ⇔ pi ≤
α

m
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Sidak correction

Slightly less conservative than Bonferroni (but not much). Requires

independence!

1 − (1 − α)m = α∗ ⇔ α = 1 − m√1 − α∗
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Holm correction

�. Compute and order the individual p-values: .

�. Find 

�. If  exists then reject hypotheses corresponding to

p(1) ≤ p(2) ≤ ⋯ ≤ p(m)

k̂ = min{k : p(k) > }α
m+1−k

k̂

p(1) ≤ p(2) ≤ ⋯ ≤ p(k̂−1)
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Holm correction

Controls the FWER: Assume the (ordered)  is the �rst wrongly rejected

true hypothesis. �en .

Hypothesis  was rejected so

Since there are  true hypotheses then (Bonferroni argument) the

probability that one of them is signi�cant is at most  so FWER is

controlled.

k

k ≤ m − (m0 − 1)

k

p(k) ≤ ≤ ≤
α

m + 1 − k

α

m + 1 − (m − (m0 − 1))
α

m0

m0

α
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Practical problems

While guarantee of FWER-control is appealing, the resulting

thresholds o�ten su�fer from low power.

In practice, this tends to wipe out evidence of the most interesting

e�fects

FDR control o�fers a way to increase power while maintaining some

principled bound on error
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False discovery rate

Number of errors committed when testing  null hypotheses.

Analysis result H_0 true H_0 false Total

Reject V S R

Don't reject U T m-R

Total $m-m_0$ m

Proportion of false discoveries is . [Set to  for ]

�e false discovery rate is 

m

m0

Q = V
R

0 R = 0

FDR = E(Q) = E( )V
R
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Estimating FDREstimating FDR
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Estimating FDREstimating FDR
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Estimating FDREstimating FDR
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Estimating FDR — BH step-up

Benjamini-Hochberg step-up procedure to control the FDR at .

�. Compute and order the individual p-values: .

�. Find 

�. If  exists then reject hypotheses corresponding to

α

p(1) ≤ p(2) ≤ ⋯ ≤ p(m)

k̂ = max{k : ⋅ p(k) ≤ α}m
k

k̂

p(1) ≤ p(2) ≤ ⋯ ≤ p(k̂)
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Estimating FDR — BH step-up

-values

Note that each  is smaller or equal to the criterium in Holm's method

so controls the FWER.

p

~p(1) = min{~p(2),mp(1)}

⋮ ⋮
~p(m−1) = min{~p(m), p(m−1)}
~p(m) = p(m)

m
m−1

pi
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Estimating FDR — BH step-up

If iid of the  tests (and all tests independent) and ordered so the 

true tests comes �rst. Control FDR at level :

m0 m0

q

E(V /R) =
m

∑
r=1

E[ 1R=r] =
m

∑
r=1

E[V 1R=r]

=
m

∑
r=1

E[
m0

∑
i=1

1pi≤ 1R=r] =
m

∑
r=1

[1p1≤ 1R=r] = ⋯

=
m

∑
r=1

[
m0

∑
i=1

1p1≤ 1R=r]

= q ≤ q

V

r

1
r

1
r

qr

m

m0

r
qr

m

m0

r
qr

m

m0

m 21



 values

�e -value is de�ned to be the FDR analogue of the -value.

�e -value of an individual hypothesis test is the minimum FDR at

which the test may be called signi�cant.

q

q p

q value(pi) = min
t≥pi

F̂DR(t)

q

22



 values

When all  null hypotheses are true then FDR control is equivalent to

FWER control.

FDR approach generally gives more power than FWER control and

fewer Type I errors than uncorrected testing.

�e FDR bound holds for certain classes of dependent tests. In

practice, it is quite hard to "break"

q

m
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ExercisesExercises
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Randomzation tests

Bootstrap

Permutation tests
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Evaluating complex methods and data

When we have complex data (or perhaps just big data combined with

simple methods) and non-parametric methods then we still with to

evaluate them.

How stable are the results?
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The bootstrap/jackknife procedures

Whenever we provide an estimate (mean, proportion, ...) we also want to

infer its precision!

We may or may not be able to formulate a full parametric (or semi-

parametric model).

�e bootstrap procedure allows us to estimate the standard error even in

complicated situations or for non-standard statistics.
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Statistics 101: populations and sample
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Statistics 101: multiple samples

Di�ferent samples will result in di�ferent outcomes.

If we had the means to produce several samples we would know the

sampling distribution.
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Sample variation

30



Sample variation
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Sample variation

32



Sample variation
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Resampling

Have observations  and an estimate

for some estimation algorithm.

Want the SE of .

xi ∼ F

θ̂ = s(x)

θ̂
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The jackknife estimate

Estimate  times - once with each observation removed.

�en the jackknife estimator is

Reduces to the standard error if  is a sample average.

θ̂ N

θ̂ (−i) = s(x(−i))

SE(θ̂) =


⎷

N

∑
i=1

(θ̂ (−i) − ^̄θ (−))
2N − 1

N

θ̂
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The jackknife estimate

Non-parametric, no assumptions on , samples of size 

In general: the jackknife standard error is upwardly biased.

Only to be used with smooth, di�ferentiable statistic

x <-c(8.26, 6.33, 10.4, 5.27, 5.35, 5.61, 6.12, 6.19, 5.2,

7.01, 8.74, 7.78, 7.02, 6, 6.5, 5.8, 5.12, 7.41, 6.52, 6.21,

12.28, 5.6, 5.38, 6.6, 8.74)

CV <- function(x) sqrt(var(x))/mean(x)

CV(x)

[1] 0.2524712

library("bootstrap") ; res <- jackknife(x, CV)

F N − 1

36



The jackknife estimate

res

$jack.se

[1] 0.05389943

$jack.bias

[1] -0.009266436

$jack.values

 [1] 0.2563873 0.2565586 0.2384298 0.2507329 0.2513200

 [6] 0.2530603 0.2557374 0.2560293 0.2501992 0.2580969

[11] 0.2541045 0.2577524 0.2581067 0.2551946 0.2571038

[16] 0.2541711 0.2495662 0.2581975 0.2571609 0.2561093

[21] 0.2020978 0.2529980 0.2515338 0.2573745 0.2541045

$call

jackknife(x = x, theta = CV)
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Estimating bias

When  is unbiased then

But if the procedure has bias

then we can estimate the size of the bias from jackknife results.

θ̂

E(^̄θ) =
N

∑
i=1

E(θ̂ (−i)) = θ
1
N

E(θ̂) = θ + + + rest
a

N

b

N 2
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Estimating bias

�us,

Furthermore, the bias-corrected jackknife estimate,

is an unbiased estimate of  up to second order.

E(^̄θ − θ̂) = + rest
a

N(N − 1)

biasjack = (N − 1)(^̄θ − θ̂) = .
a

N

θ̂ jack = θ̂ − biasjack

θ 39



Improvement on the jackknife

Instead of removing 1 observation at a time, remove . �en there are

 sets

... or use the bootstrap!

d

( )N
d

SE = √ ∑((θ̂ (Z) − ^̄θ (−))
2N − d

d( )N
d
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Nonparametric bootstrap

If we could draw extra samples from the population it would be easy!

Use the sample as the population and generate "fake samples"

Population  Sample  "Fake sample"→ →

41



Nonparametric bootstrap

Get a random bootstrap sample from the sample with replacement

�en we can get

Do that  times and get information about the full distribution.

x∗ = (x∗
1,x∗

2, … ,x∗
N

)

θ̂
∗

= s(x∗)

B
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Jackknife vs bootstrap

Jackknife provides stable results (will always get the same result)

whereas bootstrap varies.

Jackknife only estimates the variance of the point estimator whereas

the bootstrap provides information on the distribution.

SE = √∑(θ̂
∗b

− θ̂
∗−

)2

B − 1
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Nonparametric bootstrap in R

results <- bootstrap(x, 200, CV)
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Parametric bootstrap

�e nonparametric bootstrap made no assumptions about the

distribution. Use distribution information if known.

Fit model to data

Draw  samples of random numbers from the �tted model

Use those for bootstrap

Useful for small sample sizes (assuming the model holds), di��cult

evaluations, ... Sampling from the "wrong" distribution and forgetting

the uncertainty. Retains the information in the explanatory variables but

needs the error distribution.

B
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Parametric bootstrap - resample residuals

Fit model to data, keep predictions  and compute a vector of

residuals, .

Create new sets of observations  using a random

residual.

Re�t the model using the new set of response variables, and compute

the statistic

Do that  times

Retains the information in the explanatory variables. What to resample?

ŷ i
ϵ̂ i = yi − ŷ i

y∗ = ŷ i + ϵ̂ j

B
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Rough R code

x <- c(5, 9, 8, 4, 7, 4, 2)

# Non-parametric bootstrap

x.star <- sample(x, replace = TRUE)

# Parametric bootstrap for assumed Gaussianity

x.star <- rnorm(length(x), mean = mean(x), sd = sd(x))

# Mean approximates the mean for Gaussian distribution for residuals

resids <- x - mean(x)

x.star <- mean(x) + sample(resids, replace=TRUE)
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What to do?

Depends on the situation.

�e structure of the data might make some options easier.

Belief about the parametric model would improve e��ciency.

Belief about the bias of the estimate would in�luence the choice.
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Bootstrap con�dence intervals

Standard 95% con�dence intervals

Could get that directly from the bootstrap results.

mean(results$thetastar) + c(-1.96, 1.96)*sd(results$thetastar)

[1] 0.1497948 0.3262128

Only really works if the distribution is symmetric

θ̂ ± 1.96SE
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Bootstrap percentile con�dence intervals

Generate the "full" distribution. Cut o�f 2.5% at each end. Use an

improvement that depends on the precision of the percentiles.

bcanon(x, 2000, CV)

$confpoints

     alpha bca point

[1,] 0.025 0.3035158

[2,] 0.050 0.3307189

[3,] 0.100 0.3595159

[4,] 0.160 0.3875672

[5,] 0.840 0.6210273

[6,] 0.900 0.6629274

[7,] 0.950 0.7128380

[8,] 0.975 0.7218803

$z0
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Bootstrap percentile con�dence intervals

Can also use the  distribution

boott(x, CV)

$confpoints

         0.001      0.01     0.025      0.05       0.1

[1,] 0.2793437 0.3234873 0.3348129 0.3488559 0.3805315

         0.5       0.9      0.95     0.975     0.99

[1,] 0.47362 0.6681084 0.7423936 0.7955465 1.383483

        0.999

[1,] 1.596856

$theta

NULL

$g

NULL

t
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Permutation / randomization testsPermutation / randomization tests
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Exchangeability

Exchangeability corresponds to the situation where the labels or order

identifying the individual observations are uninformative.

�us, the simultaneous distribution will not change a�ter permutation

Required for the bootstrap and permutation tests to work. Ful�lled for

iid.

In general, exchangeability fails when your sample can be strati�ed into

sub-groups.

P(x1, … ,xN) = P(xπ(1), … ,xπ(N))
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Permutation tests

Permute the data in order to remove association between the variables of

interest.

Can then get an idea of the null distribution.

What is the actual null hypothesis?

How can we adapt to that using permutation tests?

54



Principal component analysis

Principal component analysis (PCA) extracts a low dimensional set of

features from a high dimensional data set with a motive to capture as

much information as possible.

It is always performed on a symmetric correlation or covariance matrix

of correlations among variables. �is means the matrix should be

numeric and have standardized data.

Dimension reduction of the covariates only - outcome not used!

Unsupervised
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Principal component analysis

Typically based on singular value decomposition (SVD):

 matrix of Eigenvectors of  (  )

 diagonal matrix of Eigenvalues (  )

 matrix of with Eigenvectors of  (  )

PCA reduces  dimensions of  to  principal components.

 gives principal components

 gives loading factors (weights in rows)

X = UΣV t

U XX t n × n

Σ n × p

V t X tX p × p

p X k

UΣ
V t
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Important features of PCA

PCs are ordered by the decreasing amount of variance explained

PCs are orthogonal i.e. uncorrelated to each other

�e columns of  should be mean-centered, because then the

covariance matrix is .

X

≈ X tX
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Principal component analysis

Warning: Using `size` aesthetic for lines was deprecated in

ggplot2 3.4.0.

ℹ Please use `linewidth` instead.
This warning is displayed once every 8 hours.

Call `lifecycle::last_lifecycle_warnings()` to see

where this warning was generated.
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Principal component analysis

�. Compute the covariance matrix of the predictor data set .

�. Calculate the eigenvalues and corresponding eigenvectors of this

covariance matrix

�. Eigenvectors correspond to orthogonal directions, sort by eigenvalue.

Reduce dimensionality so pick a unit vector , and replace each data

point with its projection . Normalize �rst.

�ese new data points have variance  if . Find  s.t.

 is maximized which is the largest eigenvector.

x

u

utx

utΣu var(x) = Σ u

utΣu
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Example: Chemicals in Italian wine

3 types of wine (V1).

wine <- read.table(

"http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data", sep=",")

  Cvs Alcohol Malic acid  Ash Alcalinity of ash

1   1   14.23       1.71 2.43              15.6

2   1   13.20       1.78 2.14              11.2

3   1   13.16       2.36 2.67              18.6

4   1   14.37       1.95 2.50              16.8

5   1   13.24       2.59 2.87              21.0

6   1   14.20       1.76 2.45              15.2

  Magnesium Total phenols Flavanoids

1       127          2.80       3.06

2       100          2.65       2.76

3       101          2.80       3.24

4       113          3.85       3.49

5       118          2.80       2.69

6       112          3.27       3.39

  Nonflavanoid phenols Proanthocyanins Color intensity

1                 0.28            2.29            5.64

2                 0.26            1.28            4.38

3                 0.30            2.81            5.68

4                 0.24            2.18            7.80

5                 0.39            1.82            4.32
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Example: Chemicals in Italian wine

sdc <- as.data.frame(scale(wine[,2:14])) # standardise

wine.pca <- prcomp(sdc)                  # run PCA

summary(wine.pca)

Importance of components:

                         PC1    PC2    PC3     PC4

Standard deviation     2.169 1.5802 1.2025 0.95863

Proportion of Variance 0.362 0.1921 0.1112 0.07069

Cumulative Proportion  0.362 0.5541 0.6653 0.73599

                           PC5     PC6     PC7     PC8

Standard deviation     0.92370 0.80103 0.74231 0.59034

Proportion of Variance 0.06563 0.04936 0.04239 0.02681

Cumulative Proportion  0.80162 0.85098 0.89337 0.92018

                           PC9   PC10    PC11    PC12

Standard deviation     0.53748 0.5009 0.47517 0.41082

Proportion of Variance 0.02222 0.0193 0.01737 0.01298

Cumulative Proportion  0.94240 0.9617 0.97907 0.99205

                          PC13

Standard deviation     0.32152

Proportion of Variance 0.00795

Cumulative Proportion  1.00000 61



Scree plot

screeplot(wine.pca, type="lines", col="white", lwd=3, 

          bg="white", col.axis="white", col.lab="white", cex.lab=2, col.main="white")

box(col="white")
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Loadings (weights) for pca

wine.pca$rotation

                                      PC1          PC2

Alcohol                      -0.144329395 -0.483651548

Malic acid                    0.245187580 -0.224930935

Ash                           0.002051061 -0.316068814

Alcalinity of ash             0.239320405  0.010590502

Magnesium                    -0.141992042 -0.299634003

Total phenols                -0.394660845 -0.065039512

Flavanoids                   -0.422934297  0.003359812

Nonflavanoid phenols          0.298533103 -0.028779488

Proanthocyanins              -0.313429488 -0.039301722

Color intensity               0.088616705 -0.529995672

Hue                          -0.296714564  0.279235148

OD280/OD315 of diluted wines -0.376167411  0.164496193

Proline                      -0.286752227 -0.364902832

                                     PC3         PC4

Alcohol                      -0.20738262 -0.01785630

Malic acid                    0.08901289  0.53689028

Ash                           0.62622390 -0.21417556

Alcalinity of ash             0.61208035  0.06085941

Magnesium 0.13075693 -0.35179658
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Biplot

biplot(wine.pca, col=c("black","red"), lwd=3)
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PCA

Each PC is a linear combination of the existing (original) variables.

Each pair of PCs are orthogonal.

PCA on unnormalized variables will lead to large loadings for

variables with high variance.

Interpretation

Now that we have the PCs - then what?

Use the new components as replacement predictors in a regression

model.
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Principal component regression

pc <- predict(wine.pca)[,1:4]  # Select first 4 pcs

model <- lm(wine[,1] ~ pc) # Not super optimal model ...

tidy(model)

# A tibble: 5 × 5

  term         estimate std.error statistic   p.value

  <chr>           <dbl>     <dbl>     <dbl>     <dbl>

1 (Intercept)  1.94        0.0260   74.4    2.66e-133

2 pcPC1        0.319       0.0120   26.5    8.07e- 63

3 pcPC2       -0.00559     0.0165   -0.338  7.36e-  1

4 pcPC3        0.000991    0.0217    0.0456 9.64e-  1

5 pcPC4        0.0591      0.0272    2.17   3.15e-  2

Virtually no limit to the number of predictors

Correlated/noisy predictors do not undermind regression �t

PCs carry maximum amount of variance possible
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