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Practicalities

e Every day from 8.15 to 15 in room 7.0.08/7.0.18/35.3.13
e Internet access: eduroam or KU-guest

e R

* Breaks as we go along

e Please read before classes




Course overview

1. Multiple testing, dimension
reduction, randomization tests
2. High-dimensional data,
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4. Multiple imputation

techniques



https://web.stanford.edu/~hastie/CASI/

Data sizes. The N < P problem
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The "Big Data" revolution

1. "Big P small N" problem with many modern large-scale-datasets:
registers, images, *-omics, ...
2. Need to reduce the dimension in some way

3. How do we evaluate significance when we have used the data for
feature selection?

4. Multiple testing becomes an issue --- not just for high-dimensional
data
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Multiple comparison problems
Errors committed when testing a single null hypotheses, H

Analysis result Ho true Ho false

Reject o 1-f

| Doritreject | 1o | B

« is the significance level

1 — Bis the power




Multiple comparison problems

The family-wise error rate (FWER) is the probability of making at least
one type I error (false positive).

For m tests we have
FWER = P(U(p; < a))) = 1 — P(no false positives) =1 — (1 — a)™ < ma

where the third equality only holds under independence, but the

inequality holds due to Boole’s inequality.




Multiple comparison problems

Number of errors committed when testing m null hypotheses.

Analysis result H_otrue H_ofalse Total

Re]ect
--
Total

Here R, the number of rejected hypotheses/discoveries. V, .S, U and T’
are unobserved. The FWER is

FWER=P(V >0)=1—-P(V =0)




Bonferroni correction

The most conservative method but is free of dependence and
distributional assumptions.

FWER=1—-PV=0=1—-(1-a)" <ma

So set the significance level for each individual test at a/m.

In other words we reject the ith hypothesis if

Q
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Sidak correction

1-(1-a)"=a*"<a=1-{/1-a"

Slightly less conservative than Bonferroni (but not much). Requires

independence!




Holm correction

1. Compute and order the individual p-values: p;;) < pa) < -+ < pim).-

2. Find k = min{k : pz) > pE

3. If k exists then reject hypotheses corresponding to
P@) < P(2) < --- < Py




Holm correction

Controls the FWER: Assume the (ordered) k is the first wrongly rejected
true hypothesis. Then k < m — (mg — 1).

Hypothesis k was rejected so

e e e
< —

< <
p(k)_m—l—l—k_m—i—l—(m—(mo—l)) m

Since there are mg true hypotheses then (Bonferroni argument) the
probability that one of them is significant is at most o so FWER is

controlled.




Practical problems

e While guarantee of FWER-control is appealing, the resulting
thresholds often suffer from low power.

In practice, this tends to wipe out evidence of the most interesting
effects

e FDR control offers a way to increase power while maintaining some
principled bound on error




False discovery rate

Number of errors committed when testing m null hypotheses.

Analysis result H otrue H_ofalse Total

ect
-_

Total my $m-m_0$ m

Proportion of false discoveries is () = %. [Set to 0 for R = 0]

The false discovery rateis FDR = E(Q) = FE (%)
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Estimating FDR — BH step-up
Benjamini-Hochberg step-up procedure to control the FDR at .

1. Compute and order the individual p-values: p1) < p) < -+ < pim).-
2. Find k = max{k : 7 - pr) < a}

3. If k exists then reject hypotheses corresponding to
P@) < P(2) Sooo0 & P




Estimating FDR — BH step-up

p-values
P = min{p ), mp(1) }
~(m—1) — mln{ﬁ (m)» %p(m—l)}
Pim) = P(m)

Note that each p; is smaller or equal to the criterium in Holm's method
so controls the FWER.




Estimating FDR — BH step-up

If iid of the my tests (and all tests independent) and ordered so the my

true tests comes first. Control FDR at level g:




g values

The g-value is defined to be the FDR analogue of the p-value.

q value(p;) = min F/DT{(t)
t=>p;

The g-value of an individual hypothesis test is the minimum FDR at
which the test may be called significant.




g values

e When all m null hypotheses are true then FDR control is equivalent to
FWER control.

e FDR approach generally gives more power than FWER control and
fewer Type I errors than uncorrected testing.

e The FDR bound holds for certain classes of dependent tests. In
practice, it is quite hard to "break”




Exercises

24



Randomzation tests

® Bootstrap

¢ Permutation tests




Evaluating complex methods and data

When we have complex data (or perhaps just big data combined with

simple methods) and non-parametric methods then we still with to
evaluate them.

How stable are the results?




The bootstrap/jackknife procedures

Whenever we provide an estimate (mean, proportion, ...) we also want to
infer its precision!

We may or may not be able to formulate a full parametric (or semi-
parametric model).

The bootstrap procedure allows us to estimate the standard error even in

complicated situations or for non-standard statistics.







Statistics 101: multiple samples

Different samples will result in different outcomes.

If we had the means to produce several samples we would know the
sampling distribution.




Sample variation
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Sample variation
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Sample variation
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Resampling
Have observations x; ~ F'and an estimate
0 = s(z)

for some estimation algorithm.

Want the SE of 6.




The jackknife estimate
Estimate @ N times - once with each observation removed.
0_iy = s(z(_))

Then the jackknife estimator is

N-1

SEé: é—i_§—2
©) \ N z.:1(() (-))

Reduces to the standard error if 8 is a sample average.




The jackknife estimate

e Non-parametric, no assumptions on F', samples of size N — 1
e In general: the jackknife standard error is upwardly biased.
e Only to be used with smooth, differentiable statistic

x <-c(8.26, 6.33, 10.4, 5.27, 5.35, 5.61, 6.12, 6.19, 5.2,
7.01, 8.74, 7.78, 7.02, 6, 6.5, 5.8, 5.12, 7.41, 6.52, 6.21,
12.28, 5.6, 5.38, 6.6, 8.74)

CV <- function(x) sqrt(var(x))/mean(x)

CV(x)

[1] 0.2524712

library("bootstrap") ; res <- jackknife(x, CV)




The jackknife estimate

res
Sjack.se
[1] 0.05389943
$jack.bias
[1] -0.009266436
$jack.values
[1] 0.2563873 0
[6] 0.2530603 0
[11] 0.2541045 0
[16] 0.2541711 O
[21] 0.2020978 0
$Scall

jackknife(x =

)

.2565586
.2557374
.2577524
.2495662
.2529980

theta =

(OO MO OMNOC

.2384298
.2560293
.2581067
.2581975
.2515338

CV)

(OO MO OMNOC

.2507329
.2501992
.2551946
.2571609
.2573745

OO MO OMNGC

.2513200
.2580969
.2571038
.2561093
.2541045




Estimating bias

When 6 is unbiased then

But if the procedure has bias

A o} b

then we can estimate the size of the bias from jackknife results.




Estimating bias

Thus,

Furthermore, the bias-corrected jackknife estimate,

Hjack =0 — biaSjack

is an unbiased estimate of # up to second order. 39




Improvement on the jackknife

Instead of removing 1 observation at a time, remove d. Then there are
(Z(}[ ) sets

N —d A 2
SE: 92—9_2
\/d(N) Z((() ())

... or use the bootstrap!




Nonparametric bootstrap
If we could draw extra samples from the population it would be easy!

Use the sample as the population and generate "fake samples”

Population — Sample — "Fake sample"




Nonparametric bootstrap

Get a random bootstrap sample from the sample with replacement

i = (@0, g o0 o 85y

Then we can get

Do that B times and get information about the full distribution.




Jackknife vs bootstrap

e Jackknife provides stable results (will always get the same result)
whereas bootstrap varies.

e Jackknife only estimates the variance of the point estimator whereas
the bootstrap provides information on the distribution.

Ak —

(A A
SE_\/ B-1




Nonparametric bootstrap in R

results <- bootstrap(x, 200, CV)

IS

10




Parametric bootstrap

The nonparametric bootstrap made no assumptions about the
distribution. Use distribution information if known.

e Fit model to data
e Draw B samples of random numbers from the fitted model
e Use those for bootstrap

Useful for small sample sizes (assuming the model holds), difficult
evaluations, ... Sampling from the "wrong" distribution and forgetting
the uncertainty. Retains the information in the explanatory variables but

needs the error distribution.




Parametric bootstrap - resample residuals

e Fit model to data, keep predictions y, and compute a vector of
residuals, €; = y; — y,.

e Create new sets of observations y* = y, + €, using a random
residual.

e Refit the model using the new set of response variables, and compute
the statistic

e Do that Btimes

Retains the information in the explanatory variables. What to resample?




Rough R code

x <- c(5, 9, 8, 4, 7, 4, 2)
Non-parametric bootstrap
x.star <- sample(x, replace = TRUE)

=

# Parametric bootstrap for assumed Gaussianity
x.star <- rnorm(length(x), mean = mean(x), sd = sd(x))

# Mean approximates the mean for Gaussian distribution for residuals
resids <- x - mean(x)
X.star <- mean(x) + sample(resids, replace=TRUE)




What todo?

Depends on the situation.

e The structure of the data might make some options easier.
e Belief about the parametric model would improve efficiency.

e Belief about the bias of the estimate would influence the choice.




Bootstrap confidence intervals

Standard 95% confidence intervals

0+ 1.96SE

Could get that directly from the bootstrap results.

mean(results$thetastar) + c(-1.96, 1.96)*sd(results$Sthetastar)

[1] 0.1497948 0.3262128

Only really works if the distribution is symmetric




Bootstrap percentile confidence intervals

Generate the "full" distribution. Cut off 2.5% at each end. Use an
improvement that depends on the precision of the percentiles.

bcanon(x, 2000, CV)

Sconfpoints
alpha bca point

[1,] 0.025 0.3035158
[2,] 0.050 0.3307189
[3,] 0.100 0.3595159
[4,] 0.160 0.3875672
[5,] 0.840 0.6210273
[6,] 0.900 0.6629274
[7,] 0.950 0.7128380
[8,] 0.975 0.7218803

$z0



Bootstrap percentile confidence intervals

Can also use the t distribution

boott(x, CV)

Sconfpoints
0.001 0.01 0.025 0.05 0.1
[1,] 0.2793437 0.3234873 0.3348129 0.3488559 0.3805315
0.5 ©.9 0.95 ©.975 0.99
[1,] 0.47362 0.6681084 0.7423936 0.7955465 1.383483
0.999
[1,] 1.596856

Stheta




Permutation / randomization tests




Exchangeability

Exchangeability corresponds to the situation where the labels or order
identifying the individual observations are uninformative.

Thus, the simultaneous distribution will not change after permutation
P(a:l, .« ooy CCN) — P(a}ﬂ(l), “ o 7337r(N))

Required for the bootstrap and permutation tests to work. Fulfilled for

iid.

In general, exchangeability fails when your sample can be stratified into

sub-groups. 53




Permutation tests

Permute the data in order to remove association between the variables of

Interest.

Can then get an idea of the null distribution.

What is the actual null hypothesis?

How can we adapt to that using permutation tests?




Principal component analysis

Principal component analysis (PCA) extracts a low dimensional set of
features from a high dimensional data set with a motive to capture as
much information as possible.

It is always performed on a symmetric correlation or covariance matrix
of correlations among variables. This means the matrix should be
numeric and have standardized data.

Dimension reduction of the covariates only - outcome not used!

Unsupervised




Principal component analysis

Typically based on singular value decomposition (SVD):
X=UxV*

e U matrix of Eigenvectors of X X* (n X n)
e 3 diagonal matrix of Eigenvalues (n X p)
e V! matrix of with Eigenvectors of X*X (p X p)

PCA reduces p dimensions of X to k principal components.

e U gives principal components

e V! givesloading factors (weights in rows) 5




Important features of PCA

e PCs are ordered by the decreasing amount of variance explained
e PCsare orthogonal i.e. uncorrelated to each other

e The columns of X should be mean-centered, because then the

covariance matrixis ~ X' X.




Principal component analysis

Warning: Using size aesthetic for lines was deprecated 1in
ggplot2 3.4.0.

i Please use linewidth’ 1dinstead.

This warning is displayed once every 8 hours.

Call "lifecycle::last_lifecycle_warnings() to see
where this warning was generated.




Principal component analysis

1. Compute the covariance matrix of the predictor data set .
2. Calculate the eigenvalues and corresponding eigenvectors of this

covariance matrix
3. Eigenvectors correspond to orthogonal directions, sort by eigenvalue.

Reduce dimensionality so pick a unit vector u, and replace each data
point with its projection u'z. Normalize first.

These new data points have variance u'Xu if var(xz) = X. Find u s.t.
u!Yu is maximized which is the largest eigenvector.




Example: Chemicals in Italian wine

3 types of wine (v1).

wine <- read.table(
"http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data", sep=",")

Cvs Alcohol Malic acid Ash Alcalinity of ash

1 1 14.23 1.71 2.43 15.6
2 1 13.20 1.78 2.14 11.2
3 1 13.16 2.36 2.67 18.6
4 1 14.37 1.95 2.50 16.8
5 1 13.24 2.59 2.87 21.0
6 1 14.20 1.76 2.45 15.2
Magnesium Total phenols Flavanoids
1 127 2.80 3.06
2 100 2.65 2.76
3 101 2.80 3.24
4 113 3.85 3.49
5 118 2.80 2.69
6 112 3.27 3.39
Nonflavanoid phenols Proanthocyanins Color 1intensity
1 0.28 2.29 5.64
2 0.26 1.28 4.38
3 0.30 2.81 5.68
4 0.24 2.18 7.80 60
5 0.39 1.82 4.32




Example: Chemicals in Italian wine

sdc <- as.data.frame(scale(wine[,2:14]))
wine.pca <- prcomp(sdc)
summary (wine.pca)

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 2.169 1.5802 1.2025 0.95863
Proportion of Variance 0.362 0.1921 0.1112 0.07069

O]

.362 0.5541 0.6653 0.73599
PC5 PC6 PC7 PC8
.92370 0.80103 0.74231 0.59034
.06563 0.04936 0.04239 0.02681
.80162 0.85098 0.89337 0.92018
PC9 PC10 PC11 PC12

Cumulative Proportion

O]

Standard deviation
Proportion of Variance
Cumulative Proportion

(O O)

Standard deviation 0.53748 0.5009 0.47517 0.41082

Proportion of Variance 0.02222 0.0193 0.01737 0.01298

Cumulative Proportion 0.94240 0.9617 0.97907 0.99205
PC13

Standard deviation 0.32152

Proportion of Variance 0.00795

Cumulative Proportion 1.00000 61




Scree plot

screeplot(wine.pca, type="lines", col="white", 1lwd=3,
bg="white", col.axis="white", col.lab="white", cex.lab=2, col.main="white")
box (col="white")

wine.pca

variances
o




Loadings (weights) for pca

wine.pca$rotation

Alcohol -0.
Malic acid 0.
Ash 0.
Alcalinity of ash 0.
Magnesium -0.
Total phenols -0
Flavanoids -0
Nonflavanoid phenols 0.
Proanthocyanins -0
Color intensity 0.
Hue -0.
0D280/0D315 of diluted wines -0
Proline -0.
Alcohol =

Malic acid

Alcalinity of ash

PC1
144329395
245187580
002051061
239320405
141992042

.394660845
.422934297

2985331063

.313429488

088616705
296714564

.376167411

286752227
PC3

0.20738262
0.08901289
Ash 0.
0]
(,)

62622390

.61208035

PC2

.483651548
.224930935
.316068814
.010590502
.299634003
.065039512
.003359812
.028779488
.039301722
.529995672
.279235148
.164496193
.364902832

PC4

-0.01785630

0.53689028

-0.21417556

0.06085941

63



Biplot

biplot(wine.pca, col=c("black","red"), lwd=3)

015 -0.05 0.05 0.15

PCA



PCA

e Each PCisalinear combination of the existing (original) variables.

e Each pair of PCs are orthogonal.

e PCA on unnormalized variables will lead to large loadings for
variables with high variance.

® Interpretation

Now that we have the PCs - then what?

Use the new components as replacement predictors in a regression

model.




Principal component regression

pc <- predict(wine.pca)l[,1:4]
model <- lm(wine[,1] ~ pc)
tidy (model)

# A tibble: 5 x 5

term estimate std.error statistic p.value

<chr> <dbl> <db1l> <dbl> <db1l>
1 (Intercept) 1.94 0.0260 74.4 2.66e-133
2 pcPC1l ©.319 0.0120 PASIRS 8.07e- 63
3 pcPC2 -0.00559 0.0165 -0.338 7.36e- 1
4 pcPC3 0.000991 0.0217 0.0456 9.64e- 1
5 pcPC4 0.0591 0.0272 2.17 3.15e- 2

e Virtually no limit to the number of predictors
e Correlated/noisy predictors do not undermind regression fit

e PCs carry maximum amount of variance possible




