
Adv. Stat. Topics A

Day 3

Lectures about trees and forests

Anne Lyngholm Sørensen (als@sund.ku.dk)

Thomas Alexander Gerds (tag@biostat.ku.dk)

Helene Charlotte Wiese Rytgaard (hely@sund.ku.dk)

Section of Biostatistics, Department of Public Health

1 / 129

Outline

▸ Modeling cultures

▸ Model selection

▸ Decision trees

▸ From trees to forests

▸ Tuning random forests

▸ Variable importance

2 / 129

Software Overview (see also http:
//philipppro.github.io/More_complete_list/)

Outcome
Package Conti-

nuous
Binary Survival Comp.

risks
Method

rpart1 X X X Tree
randomForest2 X X Forest
party3 X X X Tree/Forest
randomForestSRC4 X X X X Forest
ranger5 X X X Forest

1rpart Therneau, Atkinson and Ripley
2randomForest Liaw and Wiener (based on Breiman and Cutler)
3ctree, cforest Hothorn
4rfsrc Ishwaran
5ranger Wright and Ziegler

3 / 129

http://philipppro.github.io/More_complete_list/
http://philipppro.github.io/More_complete_list/

Targets of analysis: Random forests are used to

▸ predict individual outcome
▸ rank and select variables

in particular in high dimensional settings where the number of
variables exceeds the number of subjects in the dataset.

Example: binary outcome Y

Y =
⎧⎪⎪⎨⎪⎪⎩
1 event
0 no event

Type Prediction Error
Class c = either 0 or 1 Y==c
Probability p= value between 0 and 1 (Y - p)2

Random forest can be an alternative to logistic regression

4 / 129

Targets of analysis: Random forests are used to

▸ predict individual outcome
▸ rank and select variables

in particular in high dimensional settings where the number of
variables exceeds the number of subjects in the dataset.

Example: binary outcome Y

Y =
⎧⎪⎪⎨⎪⎪⎩
1 event
0 no event

Type Prediction Error
Class c = either 0 or 1 Y==c
Probability p= value between 0 and 1 (Y - p)2

Random forest can be an alternative to logistic regression

4 / 129

The two cultures

L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16
(3):199-215, 2001.

5 / 129

The two cultures

6 / 129

The two cultures

7 / 129

Example: epo study

Anaemia is a deficiency of red blood cells and/or hemoglobin and
an additional risk factor for cancer patients.

Randomized placebo controlled trial6: does treatment with epoetin
beta – epo – (300 U/kg) enhance hemoglobin concentration level
and improve survival chances?

Henke et al. 2006 identified the c20 expression (erythropoietin
receptor status) as a new biomarker for the prognosis of
locoregional progression-free survival.

6Henke et al. Do erythropoietin receptors on cancer cells explain
unexpected clinical findings? J Clin Oncol, 24(29):4708-4713, 2006.

8 / 129

Treatment

The study includes 149 7head and neck cancer patients with a
tumor located in the oropharynx (36%), the oral cavity (27%), the
larynx (14%) or in the hypopharynx (23%).

One of the treatments was radiotherapy following

Resection
Complete Incomplete No

Placebo 35 14 25
Epo 36 14 25

7with non-missing blood values
9 / 129

Outcome

Blood hemoglobin levels were measured weekly during radiotherapy
(7 weeks).

Treatment with epoetin beta was defined successful when the
hemoglobin level increased sufficiently. For patient i set

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 treatment successful
0 treatment failed

10 / 129

Target

Patient no. Treatment successful Predicted probability

1 0 P1

2 0 P2

3 1 P3

4 1 P4

5 0 P5

6 1 P6

7 1 P7

⋅ ⋅ ⋅
⋅ ⋅ ⋅

11 / 129

Predictors

Age min: 41 y, median: 59 y, max: 80 y
Gender male: 85%, female: 15%
Baseline hemoglobin mean: 12.03 g/dl, std: 1.45
Treatment epo: 50%, placebo 50%
Resection complete: 48%, incomplete: 19%,

no resection: 34%
Epo
receptor status neg: 32%, pos: 68%

12 / 129

Logistic regression

Response: treatment successful yes/no

Factor OddsRatio StandardError CI.95 pValue

(Intercept) 0.00 4.01 – < 0.0001

Age 0.97 0.03 [0.91;1.03] 0.2807

Sex:female 4.71 0.84 [0.91;26.02] 0.0657

HbBase 3.25 0.27 [1.99;5.91] < 0.0001

Treatment:Epo 90.92 0.76 [23.9;493.41] < 0.0001

Resection:Incompl 1.75 0.81 [0.36;9.03] 0.4924

Resection:Compl 4.14 0.69 [1.13;17.36] 0.0395

Receptor:positive 5.81 0.66 [1.72;23.39] 0.0076

Does that mean everyone should be treated?

13 / 129

Logistic regression

Response: treatment successful yes/no

Factor OddsRatio StandardError CI.95 pValue

(Intercept) 0.00 4.01 – < 0.0001

Age 0.97 0.03 [0.91;1.03] 0.2807

Sex:female 4.71 0.84 [0.91;26.02] 0.0657

HbBase 3.25 0.27 [1.99;5.91] < 0.0001

Treatment:Epo 90.92 0.76 [23.9;493.41] < 0.0001

Resection:Incompl 1.75 0.81 [0.36;9.03] 0.4924

Resection:Compl 4.14 0.69 [1.13;17.36] 0.0395

Receptor:positive 5.81 0.66 [1.72;23.39] 0.0076

Does that mean everyone should be treated?

13 / 129

The model provides information for a single patient

For example: the predicted probability that a 51 year old man with
complete tumor resection and baseline hemoglobin level 12.6 g/dl
reaches the target hemoglobin level (Yi=1) is

Epo treatment: 97.4%
Placebo group: 29.2 %

If a similar patient has baseline hemoglobin level 14.8 g/dl then the
model predicts:

Epo treatment: 99.8%
Placebo group: 84.7 %

14 / 129

The model provides information for a single patient

For example: the predicted probability that a 51 year old man with
complete tumor resection and baseline hemoglobin level 12.6 g/dl
reaches the target hemoglobin level (Yi=1) is

Epo treatment: 97.4%
Placebo group: 29.2 %

If a similar patient has baseline hemoglobin level 14.8 g/dl then the
model predicts:

Epo treatment: 99.8%
Placebo group: 84.7 %

14 / 129

Model selection

Very many different ’logistic regression models’ can be constructed
by selecting subsets of variables, transformations, and interactions
of variables.

"Standard" multiple (logistic) regression works if
▸ the number of predictors is not too large, and substantially

smaller than the sample size
▸ the decision maker has a-priory knowledge about which

variables to put into the model

Ad-hoc model selection algorithms, like automated backward
elimination, do not lead to reproducible prediction models.

15 / 129

16 / 129

Backward elimination
On full data (n=149):

library(rms)
full <- lrm(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=Epo)
fastbw(full)
bw <- lrm(Y∼sex+HbBase+Treat+Receptor,data=Epo)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
age 1.16 1 0.2807 1.16 1 0.2807 -0.84
Resection 3.75 2 0.1532 4.92 3 0.1781 -1.08

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P
Intercept -11.257 3.0129 -3.736 0.00018665428
sex=male -1.672 0.8221 -2.034 0.04195853231
HbBase 1.099 0.2719 4.043 0.00005279348
Treat=Placebo -3.843 0.6992 -5.496 0.00000003887
Receptor=positive 1.413 0.6355 2.224 0.02615849462

Factors in Final Model

[1] sex HbBase Treat Receptor

17 / 129

Backward elimination
On reduced data (n=130):

library(rms)
set.seed(17)
Epo17 <- Epo[sample(1:149,replace=FALSE,size=130),]
sub <- lrm(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data=Epo17)
fastbw(sub)
subbw <- lrm(Y∼HbBase+Treat, data=Epo17)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
age 0.61 1 0.4362 0.61 1 0.4362 -1.39
Resection 4.81 2 0.0905 5.41 3 0.1440 -0.59

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P
Intercept -11.657 3.2936 -3.539 0.000401291
sex=male -1.692 0.8643 -1.958 0.050277808
HbBase 1.127 0.2954 3.816 0.000135846
Treat=Placebo -3.370 0.6971 -4.833 0.000001343
Receptor=positive 1.311 0.6639 1.974 0.048333452

Factors in Final Model

[1] sex HbBase Treat Receptor

18 / 129

Predicted chance of treatment success for a new patient
newpatient

age sex HbBase Treat Resection Receptor
1 48 male 10.8 Epo No negative

pfull=predictRisk(full,newdata=newpatient)
pbw=predictRisk(bw,newdata=newpatient)
psubbw=predictRisk(subbw,newdata=newpatient)
table results
res=cbind(round(100*c(pfull,pbw,psubbw),1))
rownames(res)=c("Full model","BW all data","BW subset")
colnames(res)=c("Predicted chance (%)")
res

Predicted chance (%)
Full model 16.9
BW all data 24.1
BW subset 47.8

19 / 129

Exercise

Load the Epo data:

Epo <- read.csv("http://publicifsv.sund.ku.dk/∼helene/
Epo.csv", stringsAsFactors=TRUE)

Epo data set is ready for analysis
▸ Choose your favorite seed to generate a subsample (n=130) of

the Epo data
▸ Run backward elimination with function rms::fastbw
▸ Predict the outcome for the following new patient

newpatient <- read.csv("http://publicifsv.sund.ku.dk/∼
helene/newpatient", stringsAsFactors=TRUE)

▸ Report the selected variables and the predicted risk

20 / 129

Decision trees

21 / 129

A Conversation of Richard Olshen with Leo Breiman

. . .

Olshen: What about arcing, bagging
and boosting?
Breiman: Okay. Yeah. This is
fascinating stuff, Richard. In the last
five years, there have been some really
big breakthroughs in prediction. And I
think combining predictors is one of
the two big breakthroughs. And the
idea of this was, okay, that suppose
you take CART, which is a pretty
good classifier, but not a great
classifier. I mean, for instance, neural
nets do a much better job.
Olshen: Well, suitably trained?
Breiman: Suitably trained.
Olshen: Against an untrained
CART?

Breiman: Right. Exactly. And I think
I was thinking about this. I had
written an article on subset selection
in linear regression. I had realized
then that subset selection in linear
regression is really a very unstable
procedure. If you tamper with the
data just a little bit, the first best five
variable regression may change to
another set of five variables. And so I
thought, “Okay. We can stabilize this
by just perturbing the data a little
and get the best five variable
predictor. Perturb it again. Get the
best five variable predictor and then
average all these five variable
predictors.” And sure enough, that
worked out beautifully. This was
published in an article in the Annals
(Breiman, 1996b).

. . .
Statist. Sci. Volume 16, Issue 2 (2001), 184-198.

22 / 129

Conditional inference trees are not very deep (by default)
library(party)
plot(ctree(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=

Epo))

Treat
p < 0.001

1

Placebo Epo

Resection
p = 0.043

2

{No, Incompl} Compl

Node 3 (n = 39)

1
0

0

0.2

0.4

0.6

0.8

1
Node 4 (n = 35)

1
0

0

0.2

0.4

0.6

0.8

1

HbBase
p < 0.001

5

≤ 11.3 > 11.3

Node 6 (n = 19)

1
0

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 56)

1
0

0

0.2

0.4

0.6

0.8

1

23 / 129

A deeper more greedy tree
library(party)
plot(ctree(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=

Epo,controls=ctree_control(mincriterion = .01)))

Treat
p < 0.001

1

Placebo Epo

Resection
p = 0.043

2

{No, Incompl} Compl

Node 3 (n = 39)

1
0

0

0.2

0.4

0.6

0.8

1

HbBase
p = 0.309

4

≤ 12.1 > 12.1

Node 5 (n = 25)

1
0

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 10)

1
0

0

0.2

0.4

0.6

0.8

1

HbBase
p < 0.001

7

≤ 11.3 > 11.3

Node 8 (n = 19)

1
0

0

0.2

0.4

0.6

0.8

1

Resection
p = 0.641

9

{Incompl, Compl} No

Receptor
p = 0.527

10

positive negative

Node 11 (n = 27)

1
0

0

0.2

0.4

0.6

0.8

1
Node 12 (n = 11)

1
0

0

0.2

0.4

0.6

0.8

1
Node 13 (n = 18)

1
0

0

0.2

0.4

0.6

0.8

1

24 / 129

Classification trees

A tree model is a form of recursive partitioning.

It lets the data decide which variables are important and where to
place cut-offs in continuous variables.

In general terms, the purpose of the analyzes via tree-building
algorithms is to determine a set of splits that permit accurate
prediction or classification of cases.

In other words: a tree is a combination of many medical tests.

25 / 129

Roughly, the algorithm works as follows:

1. Find the predictor so that the best possible split on that
predictor optimizes some statistical criterion over all possible
splits on the other predictors.

2. For ordinal and continuous predictors, the split is of the form
X < c versus X ≥ c .

3. Repeat step 1 within each previously formed subset.
4. Proceed until fewer than k observations remain to be split, or

until nothing is gained from further splitting, i.e. the tree is
fully grown.

5. The tree is pruned according to some criterion.

26 / 129

Characters of classification trees

▸ Trees are specifically designed for accurate
classification/prediction

▸ Results have a graphical representation and are easy to
interpret

▸ No model assumptions
▸ Recursive partitioning can identify complex interactions
▸ One can introduce different costs of miss-classification in the

tree
But:
▸ Trees are not robust against even small perturbations of the

data.
▸ It is quite easy to over-fit the data.
▸ Trees are weak learners

27 / 129

Random forests

28 / 129

Growing trees into forests

Decision trees are nice because:

▸ They produce results that are easy to interpret
▸ They require no model assumptions

But:

▸ They easily overfit the data
▸ Trees are weak learners

Random forests can overcome some of these weaknesses by
combining multiple decision trees.

29 / 129

Outline

▸ Modeling cultures

▸ Model selection

▸ Decision trees

▸ From trees to forests

▸ Tuning random forests

▸ Variable importance

30 / 129

Outline

▸ Modeling cultures

▸ Model selection

▸ Decision trees

▸ From trees to forests
▸ Random Forest and Machine Learning
▸ Bootstrapping
▸ Random subspace
▸ Ensemble methods

▸ Tuning random forests
▸ Variable importance

31 / 129

Random forests and machine learning

Random forests is a machine learning method.

32 / 129

When is Random Forests cool?

It is cool when:

▸ You want to predict an outcome where prediction accuracy is
key.

▸ You want a machine to help in selecting what is important for
getting better predictions.
▸ You do not know the underlying dynamics of the outcome
▸ You do not have a specific hypothesis

33 / 129

34 / 129

35 / 129

36 / 129

When is it then uncool?

You pay by losing some of the traditional statistical inference

This includes how covariates influence the outcome (e.g. usual
coefficients from e.g. linear regression models, or summary
statistics such as OR, RR and HR).

Hypotheses about causality becomes untestable in the traditional
statistical sense.

37 / 129

Easy peasy predictions

A little glimpse into the future:

library(randomForestSRC) # load the R library

Fitting a random forest is then fairly easy,

RFmodel <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data = Epo, mtry = 2, ntree = 500,
nodesize = 5)

And extracting predictions:

round(RFmodel$predicted[1:5],3)

[1] 0.075 0.066 0.956 0.916 0.052

38 / 129

Understanding how it works

The primary interest in this course, is that you understand how
Random Forests work and some of the considerations to do when
fitting a random forest.

39 / 129

The elements

We will go through some of the key-elements of the Random
Forests method via the Epo example.

It will aid in understanding specifically four concepts of Random
Forests:
1. Decision Trees
2. Bootstrapping
3. Random subspace
4. Ensemble methods

40 / 129

Reality vs. simulation

We will use the epo data for the purpose of illustrating, but we will
also simulate data. By simulating data, we will know the truth.

Sometimes in statistics, to understand how methods work or
perform, we simulate data.

41 / 129

Epo simulation

We take inspiration from the Epo dataset for our simulation. We
consider a scenario where we only have access to two predictors:

age HbBase
1 70 10.7
2 68 12.7
3 70 13.4
4 55 12.0
5 69 11.2
6 59 13.5

And using those, we want to estimate the probability:

P(Y = 1 ∣ age,HbBase)

Where Y = 1 means treatment is successful.

42 / 129

Epo simulation
I have simulated data to imitate the Epo data

So I know the true P(Y = 1 ∣ age,HbBase)

8

10

12

14

16

30 40 50 60 70 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution

43 / 129

Epo simulation

We can then simulate 500 observations from the data generating
distribution.

9

12

15

40 60 80
age

H
bB

as
e Success

0

1

Simulated observations

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution w. sim. obs.

44 / 129

How to build a Random Forest

We will explore techniques used inside the forest.

1. Building multiple trees:
▸ Using resamples of data (Bootstrapping)
▸ Using a subset of the covariates (Random subspace)

2. Averaging over the trees (Ensemble methods)

45 / 129

Resamples of the population
The purpose is creating multiple subpopulations, each of these new
populations will be used to fit a decision tree.

46 / 129

Bootstrapping/resampling code
Understanding how bootstrapping works is quite simpe. In R set a
seed:

set.seed(9)

Let n be the number of observations in our data set

n <- 500
bootstrap.sample <- sample(x = 1:n, size = n, replace=

TRUE)

Who is included in the bootstrap sample (look at first six)?

head(table(bootstrap.sample))

bootstrap.sample
1 3 4 5 7 8
1 1 2 1 1 1

47 / 129

Epo simulation

9

12

15

40 60 80
age

H
bB

as
e Success

0

1

Simulated observations

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution w. sim. obs.

48 / 129

Bootstrap 1 - one tree

HbBase
p < 0.001

1

≤ 11.708 > 11.708

Node 2 (n = 64)

1
0

0

0.2

0.4

0.6

0.8

1
Node 3 (n = 85)

1
0

0

0.2

0.4

0.6

0.8

1

8

10

12

14

16

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Bootstrap model 1

49 / 129

Bootstrap 2 - one tree

HbBase
p < 0.001

1

≤ 12.755 > 12.755

HbBase
p = 0.019

2

≤ 11.137 > 11.137

Node 3 (n = 48)

1
0

0

0.2

0.4

0.6

0.8

1
Node 4 (n = 56)

1
0

0

0.2

0.4

0.6

0.8

1

age
p = 0.016

5

≤ 65.463 > 65.463

Node 6 (n = 26)

1
0

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 19)

1
0

0

0.2

0.4

0.6

0.8

1

8

10

12

14

16

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Bootstrap model 2

50 / 129

Bootstrap 3 - one tree

HbBase
p < 0.001

1

≤ 10.629 > 10.629

age
p = 0.009

2

≤ 67.715 > 67.715

Node 3 (n = 31)

1
0

0

0.2

0.4

0.6

0.8

1
Node 4 (n = 7)

1
0

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 111)

1
0

0

0.2

0.4

0.6

0.8

1

8

10

12

14

16

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Bootstrap model 3

51 / 129

Bootstrap 4 (greedy tree) - usually more greedy trees are
used in RF

HbBase
p < 0.001

1

≤ 12.003 > 12.003

HbBase
p = 0.487

2

≤ 9.911 > 9.911

Node 3 (n = 22)

1
0

0
0.2
0.4
0.6
0.8
1

HbBase
p = 0.037

4

≤ 10.795> 10.795

HbBase
p = 0.588

5

≤ 10.629> 10.629

Node 6 (n = 10)

1
0

0
0.2
0.4
0.6
0.8
1

Node 7 (n = 10)

1
0

0
0.2
0.4
0.6
0.8
1

HbBase
p = 0.465

8

≤ 11.222> 11.222

Node 9 (n = 11)

1
0

0
0.2
0.4
0.6
0.8
1

age
p = 0.98

10

≤ 60.338> 60.338

age
p = 0.043

11

≤ 49.395> 49.395

Node 12 (n = 7)

1
0

0
0.2
0.4
0.6
0.8
1

Node 13 (n = 13)

1
0

0
0.2
0.4
0.6
0.8
1

Node 14 (n = 10)

1
0

0
0.2
0.4
0.6
0.8
1

HbBase
p = 0.661

15

≤ 12.873 > 12.873

HbBase
p = 0.048

16

≤ 12.448> 12.448

Node 17 (n = 15)

1
0

0
0.2
0.4
0.6
0.8
1

Node 18 (n = 16)

1
0

0
0.2
0.4
0.6
0.8
1

age
p = 0.339

19

≤ 72.14> 72.14

age
p = 0.402

20

≤ 52.507> 52.507

Node 21 (n = 8)

1
0

0
0.2
0.4
0.6
0.8
1

Node 22 (n = 19)

1
0

0
0.2
0.4
0.6
0.8
1

Node 23 (n = 8)

1
0

0
0.2
0.4
0.6
0.8
1

8

10

12

14

16

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Bootstrap model 4

52 / 129

But why? Reducing sensitivity

Random Forests compared to decision trees reduce sensitivity to
changes in the data.

We create the model based on present data, but want it to perform
well on unseen future data.

If we expect data to be completely the same in the future as in the
present, we can use a deep decision tree also as a prediction model.
But this assumption is very unusual.

We can try to create versions of the present data, to stabilize the
predictions on future data. The versions are created using
Bootstrapping.

53 / 129

Sensitivity is a kind of variability
This is kind of a talk about variability in data.
Some variability is completely natural, while some variability is just
noise/sampling variability.
We want to remove the possibility that the model fits the epistemic
variability.

8

10

12

14

16

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Bootstrap model 4

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution w. sim. obs.

54 / 129

Random Forests

We will explore techniques used inside the forest.

1. Building multiple trees:
▸ Using resamples of data (Bootstrapping)
▸ Using a subset of the covariates (Random subspace)

2. Averaging over the trees (Ensemble methods)

55 / 129

Different trees - better prediction

Random subspace is a method for making the trees even more
different.

Random subspace selects only some of the covariates to split on
per node. The method works in the same way as bootstrapping,
but on the covariates instead of the observations.

56 / 129

Epo example
We saw in the previous example that HbBase will be the first
splitting variable in most cases. This causes the trees to be
correlated.

To remove some of the correlation we can bootstrap on the
predictors.

colnames(Epo)[-1][1:4]
colnames(Epo)[-1][5:6]

[1] "age" "sex" "HbBase" "Treat"
[1] "Resection" "Receptor"

sample(colnames(Epo)[-1], 2, replace = TRUE)

[1] "Receptor" "Treat"

57 / 129

Epo simulation

Just as with bootstrapping, we can investigate this technique
visually.

We keep working on the epo simulation, where we only had two
predictors HbBase and age.

58 / 129

Random subspace 1 (greedy tree)

Which variable do we split on here?

8

10

12

14

16

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Random Subspace model 1

59 / 129

Random subspace 2 (greedy tree)

8

10

12

14

16

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Random Subspace model 2

60 / 129

Exercise 2 (part 1)
In this exercise, we will use the randomForestSRC::rfsrc() function to grow
classification trees and random forests in the Epo data.

Preparation

library("randomForestSRC") # install.packages("randomForestSRC")

1. Bootstrap sample with replacement
Use the sample function to obtain a bootstrap sample from the Epo data. The number of
observations in the bootstrap sample should be the same as the number of observations in
the Epo data. How many unique patients (percentage) are in the bootstrap data set?

set.seed(5)
n <- nrow(Epo)
bootstrap.sample <- sample(1:n, n, replace = TRUE)
number of unique patients
length(unique(bootstrap.sample))
percentage
length(unique(bootstrap.sample))/n

61 / 129

Exercise 2 (part 2)

2. Three classifaction trees

Fit three classifaction trees (ntree=1) in the Epo data using the same seed:
▸ The first tree only uses the HbBase predictor
▸ The second tree only uses the age predictor
▸ The third tree uses both HbBase and age

tree1 <- rfsrc(Y ∼ HbBase, data = Epo, ntree = 1, seed = 1)
tree2 <- rfsrc(Y ∼ age, data = Epo, ntree = 1, seed = 1)
tree3 <- rfsrc(Y ∼ age+HbBase, data = Epo, ntree = 1, seed = 1)

For each of the trees predict the chance of successful treatment for newpatient:

predict(tree1, newdata = newpatient, type = "response")$predicted
predict(tree2, newdata = newpatient, type = "response")$predicted
predict(tree3, newdata = newpatient, type = "response")$predicted

Are the predictions similar across the three models? Change the seed, re-fit the trees and
predict newpatient again. Discuss the reasons why the predictions for the new patient of
the 6 classification trees differ.

62 / 129

Exercise 2 (part 3)

3. Three random forests
▸ Now fit three random forest models each with 500 trees (ntree = 500) using all 6

predictors (age, HbBase, Treat, Resection, Receptor, sex). Fit two forests with
the same seed and the last forest with a different seed.

▸ Predict the chance of successful treatment for newpatient using all three random
forest models.

▸ Are the predictions more stable across the models compared to the classification tree
models?

▸ Does it the seed influence the predictions of the random forest models with a
clinically significant magnitude?

63 / 129

How to build a Random Forest

We will explore techniques used inside the forest.

1. Building multiple trees:
▸ Using resamples of data (Bootstrapping)
▸ Using a subset of the covariates (Random subspace)

2. Averaging over the trees (Ensemble methods)

64 / 129

Why not just a very deep tree?

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

1 tree: estimated probability (nodedepth=20)

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution w. sim. obs.

65 / 129

Averaging

Combine trees to fit P(Y = 1 ∣ age,HbBase)

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

1 tree: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

2 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

3 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

4 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

5 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

10 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

20 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

50 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

100 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

500 trees: estimated probability

66 / 129

Averaging

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

500 trees: estimated probability

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution w. sim. obs.

67 / 129

Outline

▸ Modeling cultures

▸ Model selection

▸ Decision trees

▸ From trees to forests
▸ Random Forest and Machine Learning
▸ Bootstrapping
▸ Random subspace
▸ Ensemble methods

▸ Tuning random forests
▸ Variable importance

68 / 129

Fitting a random forest

We can now fit a forest with more confidence!

RFmodel <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data = Epo, mtry = 2, ntree = 500,
nodesize = 5)

And get predictions:

round(RFmodel$predicted[1:5],3)

[1] 0.075 0.066 0.956 0.916 0.052

69 / 129

Prediction 1 vs prediction 2

But another person also fit a random forest to the Epo data, but
with other hyperparamters. . .

RFmodel2 <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data = Epo, mtry = 3, ntree = 100,
nodesize = 2)

And got predictions:

round(RFmodel2$predicted[1:5],3)

[1] 0.013 0.007 0.987 0.994 0.000

70 / 129

Evaluation

Evaluating Random Forest models = evaluating the predictions

What is the purpose of the predictions?

What exactly is available to us to make evaluations?

71 / 129

Prediction error and predictive accuracy

We know the history of our data
We observe for each patient i in the data:

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 treatment successful
0 treatment failed

Based on the history, we fit a model (e.g. using Random Forest)
We hence also have an estimate for the patient i :

P̂i = P(Yi = 1 ∣ agei ,HbBasei)

based on the i ′th patient’s observed age (agei) and Baseline
hemoglobin value (HbBasei)

72 / 129

Predictive accuracy

We can evaluate the predictions in context to the observed outcome

Patient no. Y Treatment successful Predicted probability

1 0 P̂1

2 0 P̂2

3 1 P̂3

4 1 P̂4

5 0 P̂5

6 1 P̂6

7 1 P̂7

⋅ ⋅ ⋅
⋅ ⋅ ⋅

73 / 129

Prediction error and predictive accuracy

Prediction error is measured in terms of some distance8 between:

1) the observed outcome: Yi

2) and the predicted probability: P̂i = P̂(Yi = 1 ∣ agei ,HbBasei , ...)

One example of a loss function is the squared error loss:

L(Yi , P̂i) = (Yi − P̂i)2

8Measured in terms of a loss function
74 / 129

Brier score

Evaluating the model can then be done using the Brier score.

Let n be the number of observations,

Brier score = 1
n

n

∑
i=1

(Yi − P̂i)2

As we are dealing with binary data Yi and predicted probabilities
P̂i , the Brier score is between 0 and 1.

The smaller the Brier score, the better the prediction.

75 / 129

Other criteria

There are other scores to look at than the Brier score.

Other popular choices include AUC (Area under the curve). This
method works well for discrimination between patients - hence it is
evaluating the ranking of the patients.

This kind of loss function is not a calibrating loss function - it does
not target getting the correct probabilities.

76 / 129

Predictive for who?

BLACK BOX b

New patient

Data

Prediction
function

What is the
probability

that treatment
is succesful for
new patient?

77 / 129

Easy to be predictive when knowing the truth
We can evaluate the predictions in context to the observed outcome

Patient no. Y Treatment successful Predicted probability

1 0 P1

2 0 P2

3 1 P3

4 1 P4

5 0 P5

6 1 P6

7 1 P7

⋅ ⋅ ⋅
⋅ ⋅ ⋅

But that is a little like cheating

78 / 129

Not easy when we do not know the truth
We will not know the outcome for the patients in the future.

Patient no. Y Treatment successful Predicted probability

1001 ? P1001

1002 ? P1002

1003 ? P1003

1004 ? P1004

1005 ? P1005

1006 ? P1006

1007 ? P1007

⋅ ⋅ ⋅
⋅ ⋅ ⋅

We want our model to perform well on people we have not observed

79 / 129

Coercing data to handle the future

How do we coerce our data to resemble this?

Machine learning 101

To measure the prediction error correctly, we cannot train the
model and assess the model on the same data

80 / 129

Why? Overfitting!

Overfitting happens when a model learns the detail and noise in the
data too well so that it negatively impacts the performance of the
model on new data.

Evaluating a model on the same data results in overfitting.

−0.1

0.0

0.1

0.2

0.3

0.25 0.50 0.75 1.00

data

new data

−0.1

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00

data

new data

81 / 129

Sample splitting

To evaluate predictions on something we do not train on, we can
use sample splitting:

1. I create and fit my model on the training data: Ptrain

2. I check the quality of my model on the validation data
▸ Average of L(Yi , P̂

train
i) in validation sample

82 / 129

Epo: Sample splitting

Now on real data! (Not simulation).
Let us create some training data:

Fix seed:

set.seed(5)

Take 10 % of original data to be our validation set:

val.set <- sample(x = 1:n, size = n/10, replace=FALSE)

The rest comprise our training data:

train.set <- (1:n)[!(1:n) %in% val.set]

83 / 129

Epo: Training

Fit 1 tree on the training data:

tree1.train <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data = Epo[train.set,],
ntree=1, seed=1)

Or . . . fit a forest of 100 trees on the training data:

forest.train <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data = Epo[train.set,],
ntree=100, seed=1)

84 / 129

Epo: Predicting

Predict from the tree model on the validation set:

tree1.val <- predict(model = tree1.train,
newdata = Epo[val.set,],
type = "response")$predicted

Predict from the forest model on the validation set:

forest.val <- predict(model = forest.train,
newdata = Epo[val.set,],
type = "response")$predicted

85 / 129

Epo: Evaluating

We define the loss function (Brier score):

loss.fun <- function(Y, Phat) mean((Y - Phat)^2)

Now we can compare performance:

print(rbind(
"1 tree " = loss.fun(Y = Epo[val.set,]$Y,

Phat = tree1.val),
"forest " = loss.fun(Y = Epo[val.set,]$Y,

Phat = forest.val)))

[,1]
1 tree 0.1443149
forest 0.0726101

Which one seems to perform best?

86 / 129

Exercise 3 (part 1)
In this exercise, we will investigate the Brier score using the Epo data set. We want to
evaluate which of the models performs the best. We also get more knowledge about how
to use the Brier score.

1. 50% model
In the Epo data set sample non-overlapping training and validation data sets. The
validation set should include 1/10 of the total sample size.

set.seed(5) # set seed
n <- dim(Epo)[1]
val.set <- sample(x = 1:n, size = n/10, replace=FALSE) # create val.

indicator
train.set <- (1:n)[!(1:n) %in% val.set] # create train indicator
Epo.train <- Epo[train.set,]
Epo.val <- Epo[val.set,]

We start with a prediction model which predicts 50% chance for all patients. What is the
Brier score in the validation data set using this model?

Epo.val$prediction <- 0.5 # set prediction to 50%
loss.fun <- function(Y, Phat) mean((Y - Phat)^2) # define the Brier Score
loss.fun(Epo.val$Y, Epo.val$prediction)

Would we ever use a prediction model with a larger Brier score than this model?

87 / 129

Exercise 3 (part 2)

2. Random forest model

On the training data, fit a random forest using all predictors (remember to set a seed).
Once you have fitted your random forest, you can add the predictions to the validation
data:

Epo.val$prediction <- predict(YourRandomForestModel,
newdata = Epo.val, type = "reponse")$predicted

Calculate the Brier score in the validation data. Based on the Brier score, is the random
forest a better prediction model than the simple 50% model?

88 / 129

Exercise 3 (part 3)

3. Another random forest model

Use a new seed to create a new split into training (9/10) and validation data (1/10).
Refit your random forest and re-calculate the Brier score. Can you compare this random
forest model to the model fitted in the previous training data?

4. Smaller is better

We know that the smaller the Brier score, the better the prediction model. Discuss, if it is
possible to have a Brier score of 0. When is the Brier score exactly 0 (you can look at the
formula)?

89 / 129

Exercise 3 (part 4)

5. Brier score of 0?

In the simulated data example, we know the data generating model. Explain the figure
below: why could we never get a Brier score of exactly 0 for the data-generating model.

9

12

15

40 60 80
age

H
bB

as
e Success

0

1

Simulated observations

8

10

12

14

16

30 40 50 60 70 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution

90 / 129

V fold cross-validation

In practice, the splitting of data is not done once

. . . but several times: This is called V -fold cross-validation

That almost sounds like the Bootstrapping we just learned about?

91 / 129

V fold cross-validation

In practice, the splitting of data is not done once

. . . but several times: This is called V -fold cross-validation

That almost sounds like the Bootstrapping we just learned about?

91 / 129

Bootstrapping

It is almost the same and it is done for almost the same reasons!

So when we have validation data and we use random forest, we try
to reduce overfitting in two ways.

▸ We call those not fitted in
the model given the specific
bootstrap for OOB
(Out-of-bag)

▸ The rest of the subjects are
called in-bag

bootstrap OOB

full data

random

92 / 129

We can use the out of bag data (OOB) for tuning our model

▸ The oob prediction for
patient i only uses the trees
built on bootstrap samples
where patient i was left out
of bag.

bootstrap OOB

full data

random

▸ The out of bag prediction
error is estimated by:

êrroroob =
1
n

n

∑
i=1

L(Yi , P̂
oob
i)

93 / 129

Picking the random forest model

The random forest algorithm automatically detects nonlinear
effects, complex interactions, . . .

8

10

12

14

16

30 40 50 60 70 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

500 trees: estimated probability

94 / 129

Picking the random forest model

But the algorithm involves some choices: Hyperparameters

▸ These can be tuned and lead to different results
▸ These can be tuned to optimize predictive performance

95 / 129

Tuning intro

There are mainly three variables that will be used
1. The number of predictors to randomly select at each split

(mtry)
2. The total number of trees in the ensemble (ntree)
3. The minimum number of leaf node size (nodesize)

RFmodel <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection,

data = Epo, mtry = 2, ntree = 500,
nodesize = 5)

96 / 129

Trial-and-error

We are going to experiment with a lot of different sets of
hyperparameters to find the best model fit.

Finding the best hyperparameters is a very experimental process,
while there can be some logic around selecting your
hyperparameters, it is standard to search for the best via e.g.
grid-search.

How informative is the predictors that we have in our model? If the
majority is considered strong predictors of outcome, then the
number can be small.

97 / 129

Number of random features
Epo example

We saw in the previous example that HbBase will be the first
splitting variable in most cases. This causes the trees to be
correlated.
To remove some of the correlation we can bootstrap on the
predictors.

colnames(Epo)[-1][1:3]
colnames(Epo)[-1][4:6]

[1] "age" "sex" "HbBase"
[1] "Treat" "Resection" "Receptor"

sample(colnames(Epo)[-1], 2, replace = TRUE)

[1] "Receptor" "Treat"

98 / 129

Trying different mtry

Trying with mtry = {1,2,3,4,5,6}.

rf_mt1 <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data = Epo, mtry = 1, seed = 1)
rf_mt2 <-

rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,
data = Epo, mtry = 2, seed = 1)

rf_mt3 <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,

data = Epo, mtry = 3, seed = 1)

etc.

99 / 129

Trying different mtry

Looking at the out of bag Brier score we get:

OOB Brier score
mty = 1 0.1370008
mty = 2 0.1047253
mty = 3 0.1029690
mty = 4 0.1034286
mty = 5 0.1058208
mty = 6 0.1059194

100 / 129

Combining with nodesize
nodesize affects how deep the individual decision trees can be. A
small nodesize will return deeper trees.

expand.grid(mtry = c(1,2,3,6),
nodesize = c(1,3,5,10))[1:10,]

mtry nodesize
1 1 1
2 2 1
3 3 1
4 6 1
5 1 3
6 2 3
7 3 3
8 6 3
9 1 5
10 2 5

101 / 129

Tuning mtry and nodesize

mtry 1 mtry 2 mtry 3 mtry 6

1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

0.11

0.12

0.13

0.14

nodesize

oo
b

er
ro

r

102 / 129

Tuning ntree, nodesize and mtry

1 2 3 6

1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

0.12

0.15

0.18

nodesize

oo
b

er
ro

r

ntree 1 50 100 500

103 / 129

The smallest OOB error

mtry nodesize oob.error
2 5 0.1004156

104 / 129

Tuning hyperparameters for the simulated data

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution w. sim. obs.

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

500 trees: estimated probability

105 / 129

Tuning hyperparameters for the simulated data

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Data−generating distribution w. sim. obs.

9

12

15

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00
Prob.

Tuned forest

105 / 129

Variable importance

106 / 129

When is Random Forests cool?

You want a machine to help in selecting what is important (which
predictors) for making better predictions

The machine (the tuned Random Forest model) has selected how
and which the variables are used to predict the probability of event.

We now want to understand which variables are the most important
and how they affect the prediction.

107 / 129

Recap: When is it not cool?

You pay by losing some of the traditional statistical inference

This includes how covariates influence the outcome (e.g. usual
coefficients from e.g. linear regression models, or summary
statistics such as OR, RR and HR).

Hypotheses about causality becomes untestable in the traditional
statistical sense.

108 / 129

Epo example

Treatment with epoetin beta was defined successful when the
hemoglobin level increased sufficiently. For patient i set

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 treatment successful
0 treatment failed

Age min: 41 y, median: 59 y, max: 80 y
Gender male: 85%, female: 15%
Baseline hemoglobin mean: 12.03 g/dl, std: 1.45
Treatment epo: 50%, placebo 50%
Resection complete: 48%, incomplete: 19%,

no resection: 34%
Epo
receptor status neg: 32%, pos: 68%

109 / 129

Logistic regression

Response: treatment successful yes/no

Factor OddsRatio StandardError CI.95 pValue

(Intercept) 0.00 4.01 – < 0.0001

Age 0.97 0.03 [0.91;1.03] 0.2807

Sex:female 4.71 0.84 [0.91;26.02] 0.0657

HbBase 3.25 0.27 [1.99;5.91] < 0.0001

Treatment:Epo 90.92 0.76 [23.9;493.41] < 0.0001

Resection:Incompl 1.75 0.81 [0.36;9.03] 0.4924

Resection:Compl 4.14 0.69 [1.13;17.36] 0.0395

Receptor:positive 5.81 0.66 [1.72;23.39] 0.0076

110 / 129

Maybe we are not so sure about the model

In the logistic regression, we specify a model. To use the Odds
Ratios, confidence intervals and p-values, that models needs to be
correctly specified.

This includes having the correct form of the predictions in the
model, e.g. specifying interactions and adding non-linearity.

This can be a difficult task with many predictors e.g. when using
genetic data.

111 / 129

112 / 129

113 / 129

Two sides to the story

We can describe some of the behavior of the random forest by
looking at two perspectives:
▸ Which predictors are mostly used the prediction.
▸ How the predictor affects the prediction.

114 / 129

When is a variable important?

We have used a loss function (Brier Score) so far to evaluate our
models.

Variable importance can be evaluated by investigating what
happens to the performance (e.g. Brier Score) of the Random
Forest with and without a variable. Doing this for all variables, we
can rank the variables in terms of how much error they reduce.

As before it is a good idea to use the out of bag data.

115 / 129

Variable Importance (VIMP)

We can use the out-of-bag predictions to calculate the variable
importance. This can be useful for:
▸ Identifying the most important variables
▸ Selecting variables

We will here look specifically at permutation importance.

116 / 129

Permutation importance

VIMP (Variable IMPortance) is measured by the difference in
prediction error between:

▸ running the forest with a ”noised-up” version of X
▸ running the forest with X as was observed

If prediction performance decreases more for variable X1 than for
variable X2, then importance(X1) > importance(X2)

117 / 129

Variable Importance (VIMP)

In R, we can get the values from the permutation importance by:

tuned.rf <-
rfsrc(Y ∼ age+sex+HbBase+Treat+Resection+Receptor,

data = Epo, mtry = 2, nodesize = 5,
ntree = 1000,
importance = TRUE, # getting VIMP values
seed = 6)

And plot them by:

plot(tuned.rf)

118 / 129

Variable Importance (VIMP)

0 200 400 600 800 1000

0.
10

5
0.

11
0

0.
11

5
0.

12
0

Number of Trees

E
rr

or
 r

at
e

(Y
)

sex

age

Receptor

Resection

HbBase

Treat

0.00 0.04 0.08 0.12

Variable Importance (Y)

119 / 129

Minimal depth

The minimal depth is the average distance from the root node to
the first split on a specific variable

·

·

...
age

...
...

·

...
...

age

...
...

·

age

...
...

...

The smaller the minimal depth, the more important is the variable

120 / 129

Minimal depth

Run a random forest with importance=TRUE.

rf.imp <- rfsrc(Y∼age+sex+HbBase+Treat+
Resection+Receptor,

data = Epo, nodesize = 5,
seed = 6,
ntree = 1000,
importance = TRUE)

121 / 129

Minimal depth

md <- max.subtree(rf.imp, max.order=0)
out <- sapply(1:dim(md$order)[1], function(i) mean(md$

order[i,]))
names(out) <- names(md$order[, 1])
print(out)

age sex HbBase Treat Resection Receptor
1.811 3.520 1.438 1.174 2.136 2.684

md$threshold

[1] 2.404312

122 / 129

Partial Dependence Plots (PDPs)

A way to show how a predictor affects the prediction.

Partial dependent plots (PDP) gives a graphical representation of
how by keeping all other predictors fixed. This is known as
marginalization.

123 / 129

Partial Dependence Plot (PDPs)

Say, we want to know how

P̂(Y = 1 ∣ age,Gender,HbBase,Treatment,Resection,Epo)

varies when HbBase varies

We estimate this by:

P̂HbBase(b) = 1
n

n

∑
i=1

P̂(Y = 1 ∣ agei ,Genderi ,HbBase = b,

Treatmenti ,Resectioni ,Epoi]

▸ We marginalize the forest prediction over the other
features/covariates

124 / 129

Partial Dependence Plots (PDPs)

In R, we can plot these estimates for all variables by simply writing:

plot.variable(tuned.rf,
partial=TRUE, plots.per.page=3)

125 / 129

Partial Dependence Plots (PDPs)

40 50 60 70 80

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

age

ŷ

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ● ●

●

●

●

●
● ●

0.
42

0.
44

0.
46

0.
48

0.
50

sex

ŷ

female male 8 10 12 14 16

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

HbBase

ŷ

● ● ●
●

●

● ●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

● ● ●

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Treat

ŷ

Epo Placebo

0.
35

0.
40

0.
45

0.
50

Resection

ŷ

Compl Incompl No

126 / 129

Other methods

Different types of predictor effect plots9:

Partial Dependence Plots: “Let me show you what the model
predicts on average when each data instance has the value v for
that feature. I ignore whether the value v makes sense for all data
instances.”

Other options include M-plots and ALE plots.

9Molnar, C. (2020). Interpretable Machine Learning.
127 / 129

Exercise 4: Identifying risk factors

In this exercise we consider the paper:

128 / 129

Exercise 4: Identifying risk factors

1. Read page 39–40 of the paper
▸ What is the aim of the paper?
▸ What method did they use?

2. Read the Results section (p. 41f)
▸ What are the results of the analysis?
▸ How are the results presented? (See Figures p. 43)

129 / 129

	Day 3
	Two cultures
	Decision trees
	Random forests
	Trees and forests (Intro)
	Epo example 1
	Building a forest - Bootstrapping
	Building a forest - Random subspace
	Ensemble methods

	Evaluation
	Evaluating prediction models

	Tuning
	Variable importance

