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Background—Heart failure survival models typically are constructed using Cox proportional hazards regression.
Regression modeling suffers from a number of limitations, including bias introduced by commonly used variable
selection methods. We illustrate the value of an intuitive, robust approach to variable selection, random survival forests
(RSF), in a large clinical cohort. RSF are a potentially powerful extensions of classification and regression trees, with
lower variance and bias.

Methods and Results—We studied 2231 adult patients with systolic heart failure who underwent cardiopulmonary stress
testing. During a mean follow-up of 5 years, 742 patients died. Thirty-nine demographic, cardiac and noncardiac
comorbidity, and stress testing variables were analyzed as potential predictors of all-cause mortality. An RSF of 2000
trees was constructed, with each tree constructed on a bootstrap sample from the original cohort. The most predictive
variables were defined as those near the tree trunks (averaged over the forest). The RSF identified peak oxygen
consumption, serum urea nitrogen, and treadmill exercise time as the 3 most important predictors of survival. The RSF
predicted survival similarly to a conventional Cox proportional hazards model (out-of-bag C-index of 0.705 for RSF
versus 0.698 for Cox proportional hazards model).

Conclusions—An RSF model in a cohort of patients with heart failure performed as well as a traditional Cox proportional
hazard model and may serve as a more intuitive approach for clinicians to identify important risk factors for all-cause
mortality. (Circ Cardiovasc Qual Outcomes. 2011;4:39-45.)
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Most heart failure survival models are based on multiva-
riable Cox proportional hazard regression.1–6 To pre-

vent overfitting and achieve parsimony, analysts often iden-
tify statistically significant variables by methods such as
stepwise regression or �2 statistical score ranking.1,3,7,8 These
methods yield variable results, and have been criticized for
creating bias.9 In addition, from the point of view of clini-
cians, regression modeling and variable selection appear to
occur within a computer’s “black box.”

Statistical methods like classification and regression trees
may be intuitive for clinicians, because they illustrate the
importance and relationship of variables with a single young
tree that has few branches.10 However, classification and
regression trees suffer from high variance and poor perfor-
mance,11–13 which leads to instability. Random survival
forests (RSF) modeling is a new statistical method that grows
numerous mature trees with many branches.14 RSF reduce
variance and bias by using all variables collected and by
automatically assessing for nonlinear effects and complex
interactions. They are a direct extension of the random forest,

which has been successfully used in clinical studies15–18 and,
in some cases, shown to outperform classical statistical
methods.18,19

We used RSF to illustrate an intuitive and powerful
approach for identifying important risk factors for survival in
2231 patients with systolic heart failure who underwent
cardiopulmonary stress testing at the Cleveland Clinic. Vari-
ables with relatively high importance are near the tree
trunks.20 We also compared the results of RSF to our
previously published Cox proportional hazard model for
predictive accuracy of the model and for selection of impor-
tant risk factors for all-cause mortality.21

Methods

Data Source
The design of this observational prospective study has been previ-
ously published.21 The cohort consisted of all adult patients at the
Cleveland Clinic with left ventricular ejection fraction �40% who
underwent cardiopulmonary stress testing between August 1997 and
April 2007 using a modified Naughton protocol, the most common
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protocol used in our laboratory for heart transplantation evaluation.
Patients were excluded if they were aged �18 years or had no U.S.
Social Security number. Left ventricular ejection fraction was
assessed by echocardiogram, left ventriculography, or ECG-gated
SPECT imaging. If �1 stress test was performed on an individual,
only the first was used in this analysis. Demographic information,
height and weight directly measured, medications, and stress test
results were entered into our electronic database at the time of stress
testing.

WHAT IS KNOWN

● Classic regression models have serious limitations,
including “black box” methods for determining
which variables most strongly predict outcome.

● The technique of random survival forests (RSF) is a
robust, computer-based algorithm that yields unbi-
ased assessments of variable importance.

● RSF and related techniques have been primarily used
in fields outside of clinical medicine.

WHAT THIS STUDY ADDS

● We have shown that RSF can be used to select the
most important variables predictive of mortality in
patients with severe heart failure.

The results of exercise stress testing were recorded on a
MedGraphic cardiopulmonary system (St Paul, Minn). Heart rate,
blood pressure, respiratory rate, oxygen consumption (V̇O2), carbon
dioxide production, minute ventilation, and tidal volume were
obtained every 30 seconds at rest, during exercise, and during
recovery. Exercise stress testing was symptom limited, and total
duration of exercise was measured to the nearest second. Serum
laboratory tests within 3 months were included, and only the tests
closest in time to the stress test were considered. As we discussed
previously,21 laboratory tests before October 1999 were systemati-
cally missing from our electronic database; therefore, we used
informed imputation to fill in 10% of serum glucose, serum urea
nitrogen (BUN), creatinine, and sodium values and 15% of hemo-
globin values. No other data were missing either systematically or at
random, precluding any need for multiple imputation.22 Glomerular
filtration rate was estimated using the Cockcroft-Gault equation.23

The study was approved by the Institutional Review Board at the
Cleveland Clinic, and informed consent was waived because all data
were collected and recorded as part of routine clinical care.

Study Variables
The following variables were assessed for prognostic value: sex, age,
body mass index (kg/m2), current tobacco use, insulin-treated dia-
betes, noninsulin-treated diabetes, coronary artery disease, previous
myocardial infarction, previous coronary artery bypass graft surgery,
previous percutaneous coronary intervention, implantable
cardioverter-defibrillator (ICD), pacemaker, �-blocker, angiotensin-
converting enzyme inhibitor, angiotensin receptor blocker,
potassium-sparing diuretics, antiarrythmics, anticoagulation, aspirin,
digoxin, nitrates, vasodilators, loop diuretics, thiazide diuretics,
statins, nondihydropyridine calcium channel blocker, dihydropyri-
dine calcium channel blocker, resting heart rate (beats per minute),
resting systolic blood pressure (mm Hg), left ventricular ejection
fraction, peak V̇O2 (mL/kg per min) peak respiratory exchange ratio,
treadmill exercise time, serum sodium (mmol/L), creatinine clear-
ance (mL/min), BUN (mg/dL), serum hemoglobin (g/dL), and serum
glucose (mg/dL).

End Points
The primary end point was all-cause death. Mortality data were
obtained by linking our database with the U.S. Social Security

Administration Death Index, which we previously reported to have a
sensitivity of 97%.24

Statistical Analysis
Sex-specific baseline characteristics were reported, with continuous
variables expressed as means�SD and categorical variables as
frequencies. Random survival analysis used all-cause mortality for
the outcome.24 Thirty-nine variables in 2231 patients were used for
the analysis. A survival forest of 2000 survival trees was constructed.

Figure 1 demonstrates how we build a single random tree. We start
by choosing a bootstrap sample of patients from the original cohort.
At each branch, a random set of variables are chosen as candidates
to split the branch into 2 other branches, and the variable maximizing
the log-rank statistic25 using 3 randomly selected split points was
used for splitting. The number of variables assessed at each branch
was the square root of the total number of variables. Branch levels
are numbered on the basis of their relative distance from the tree
trunk (ie, 0, 1, 2). Splitting of branches to create the tree continues
as long as possible until terminal branches have no fewer than 3
deaths.

An RSF is generated by creating 2000 trees. The most important
variables are identified as those that most frequently split the
branches near the tree trunks. There are no prespecified assumptions
regarding variables, and randomization is introduced into this model
by both random bootstrap sampling of patients from the original
cohort and random sampling of variables for each tree branch.
Importance of a variable is assessed by minimal depth from the tree
trunk.14 To illustrate this concept, we show in Figure 2 a random tree
with color coding of maximal subtrees. A maximal subtree for a
variable v is the largest subtree whose lowest branch is split using v.
The shortest distance from the tree trunk to the branch level of the
closest maximal subtree of v is the minimal depth of v. For example,
in Figure 2, exercise time splits the tree trunk and has a minimal
depth of 0, whereas BUN is the 2 green subtrees with a minimal
depth of 2. The most predictive variables for the cohort are defined
as those whose minimal depth (averaged over the forest) is smaller
than the mean minimal depth determined under the null hypothesis of
no effect.20

Figure 1. Example of a random tree. A bootstrap sample of
patients from the original data set is used to create a random
tree. At the tree trunk (or root node), a random set of variables
is chosen to be candidates, and the most predictive variable for
survival among those is identified. Node levels are numbered
based on their relative distance to the trunk of the tree (ie, 0, 1,
2). Splitting of nodes to create the tree continues until terminal
nodes have few distinct deaths.
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Prediction accuracy for RSF was assessed by Harrell C-index
using out-of-bag (OOB) data. The OOB method involves obtaining
bootstrap samples from the original cohort and using each sample to
compute a prediction model. Each bootstrap sample left out about
one-third of the data, which was referred to as the OOB data. The
C-index was calculated using an OOB ensemble constructed with the
2000 OOB data sets produced by the 2000 bootstrap samples used in
deriving the forest.

A nonparsimonious Cox proportional hazards model was con-
structed as previously described21 and compared with the RSF model
for predictive accuracy of the model and for selection of important
risk factors for all-cause mortality. Briefly, the proportional hazards
assumption was tested by scaled Schoenfeld residuals and inspection
of hazard ratio plots. Possible nonlinear associations for the Cox
proportional hazards model were tested with restricted cubic splines,
and possible interactions were tested. Prediction accuracy for the
Cox proportional hazards model was assessed by Harrell C-index
OOB data.21

All analyses were performed with SAS version 9.1.3 (SAS
Institute; Cary, NC) and R version 2.6.2 (www.R-project.org). RSF
were implemented using the “RandomSurvivalForest” R-package,
freely available through the Comprehensive R Archive Network
distribution system (http://cran.r-project.org/web/packages/random
SurvivalForest/index.html).

Results
Our cohort consisted of 2231 patients, including 602 (27%)
women and 1629 (73%) men. There were 155 women (26%
of female cohort) and 587 (36% of male cohort) men who
died during a mean follow-up of 5 years (maximum for
survivors, 11 years).

The Table shows the baseline characteristics of the cohort
according to sex. Our patients had advanced disease with low
systolic blood pressure, low peak V̇O2, and low left ventric-
ular ejection fraction. Most patients received angiotensin-
converting enzyme inhibitors or angiotensin receptor block-
ers, and �60% received �-blockers.

Figure 3 shows 6 randomly chosen trees from the 2000-tree
forest. The 3 most important variables among these trees are
color coded blue for treadmill exercise time, red for peak
V̇O2, and green for BUN. These colors appear on almost
every tree and are found near the tree trunks, demonstrating
their relative importance.

Figure 4 shows all 39 variables and plots their minimal
depth. The horizontal line separates the 10 predictive vari-
ables from the remaining nonpredictive variables. The 3

Figure 2. Illustration of minimal depth of a variable in a random tree from our 2000-tree forest. Highlighted are the 3 top variables: peak
V̇O2 (red), BUN (green), and exercise time (yellow). Depth of a node is indicated by numbers 0, 1, 2, and 3 to 8. The minimal depths are
0, 1, and 2 for exercise time, peak V̇O2, and BUN, respectively. AICD indicates automated implantable cardioverter-defibrillator; CABG,
coronary artery bypass graft; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.
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variables on the extreme left are peak V̇O2, BUN, and
treadmill exercise time and are easily seen to be the most-
predictive variables. These variables are similar to what was
found in our previously published Cox proportional hazard

model analysis but in a different relative order (ie, peak V̇O2,
treadmill exercise time, and BUN).21

Figure 5 displays how the RSF model shows interaction
among these 3 most important variables and 5-year predicted
survival. Patients with the highest peak V̇O2 and longest
treadmill exercise time have the best survival (first row, last
column), and most had low BUN. Survival was worst for
patients with the lowest peak V̇O2 and shortest treadmill time
(last row, first column) and further depended on small
changes in BUN between 20 and 40 mg/dL. In this group,
5-year predicted survival was about 70% for those with a
BUN of 20 mg/dL but only about 50% for those with a BUN
of 40 mg/dL. Survival did not change much for those with
BUN �40 mg/dL. Among those with the lowest peak V̇O2

(first column) survival depended more on BUN than on
treadmill time. For those with the shortest exercise time (last
row), survival also was very dependent on BUN. It is
important to note that these interactions and nonlinear rela-
tionships were identified by the forest and not prespecified by
the analyst.

Figure 6 is similar to Figure 5 but provides the added
dimension of �-blockers. Five-year predicted survival was
worse for all groups not taking �-blockers at the time of the
cardiopulmonary stress testing. The greatest differences in
survival were among patients with a BUN �40 mg/dL.

We compared the RSF model to a Cox proportional hazard
model. Model discrimination was similar using RSF analysis
with an OOB C-index of 0.705 compared to our previously
published nonparsimonious Cox proportional hazard model
with a C-index of 0.698.21 Using the 10 most important
variables selected by the RSF model to create another Cox
proportional hazard model, the C-index for this simplified
Cox proportional hazard model was comparable to the non-
parsimonious Cox proportional hazard model that included
�30 variables (C-index, 0.699 versus 0.698).

Discussion
RSF identified peak V̇O2, BUN, and treadmill exercise time
as the top-3 most important predictors of survival in our
cohort of 2231 ambulatory patients with systolic heart failure
who underwent cardiopulmonary stress testing at the Cleve-
land Clinic. These variables are similar to what was found in
our previously published Cox proportional hazard model
analysis but in a different relative order.21 The method used to
determine the most important predictors for RSF is easy for
clinicians to understand and visualize because important
predictor variables are located at the tree trunks of the forest,
which can be color coded for easy identification. In addition,
RSF predicted survival as well as the conventional Cox
proportional hazard model did (OOB C-index for RSF was
0.705 compared with a C-index for a nonparsimonious Cox
proportional hazard model of 0.698). Variable selection by
RSF also was used to create a simplified Cox proportional
hazard model that performed like a nonparsimonious Cox
proportional hazard model constructed with �3 times the
number of variables.21

There are 4 advantages to using RSF. First, the RSF
method is intuitive because important variables to predict
survival can be identified by inspecting the tree trunks and

Table. Sex-Specific Baseline Characteristics

Variable
All

(N�2231)
Women
(n�602)

Men
(n�1629)

Age, y 54�11 52�11 55�11

Body mass index, kg/m2 28�6 28�6 29�5

Current smokers 459 (21) 117 (19) 342 (21)

Diabetes, insulin treated 215 (10) 53 (9) 162 (10)

Diabetes, noninsulin treated 350 (16) 92 (15) 258 (16)

Coronary artery disease 906 (41) 127 (21) 779 (48)

Previous MI 279 (13) 43 (7) 236 (14)

Previous CABG 594 (27) 64 (11) 530 (33)

Previous PCI 476 (21) 75 (12) 401 (25)

ICD 647 (29) 147 (24) 500 (31)

Pacemaker 502 (23) 113 (19) 389 (24)

Medication use

�-blocker 1429 (64) 387 (64) 1042 (64)

ACE inhibitor 1711 (77) 431 (72) 1280 (79)

Angiotensin receptor blocker 290 (13) 99 (16) 191 (12)

Potassium-sparing diuretics 649 (29) 203 (34) 446 (27)

Antiarrythmic 509 (23) 90 (15) 419 (26)

Anticoagulation 899 (40) 210 (35) 689 (42)

Aspirin 1038 (47) 230 (38) 808 (50)

Digoxin 1570 (70) 424 (70) 1146 (70)

Nitrates 739 (33) 153 (25) 586 (36)

Vasodilators 136 (6) 27 (4) 109 (7)

Loop diuretics 1880 (84) 498 (83) 1382 (85)

Thiazide diuretics 279 (13) 77 (13) 202 (12)

Statin 850 (38) 172 (29) 678 (42)

Calcium channel blocker,
nondihydropyridine

16 (1) 4 (1) 12 (1)

Calcium channel blocker,
dihydropyridine

99 (4) 15 (2) 84 (5)

Resting heart rate, beats/min 76�14 78�14 76�14

Resting systolic blood pressure,
mm Hg

111�18 110�18 111�18

LVEF, (%) 20�7 21�7 20�7

Peak V̇O2, mL/kg per min 16�5 16�4 17�5

Peak respiratory exchange ratio 1.08�0.12 1.05�0.13 1.09�0.11

Treadmill exercise time, s 503�221 476�204 513�226

Serum sodium, mmol/L 139�3 140�3 139�3

Creatinine clearance, mg/min 91�43 85�44 93�43

BUN, mg/dL 25�13 23�12 26�13

Serum hemoglobin, g/dL 14�1 13�1 14�1

Serum glucose, mg/dL 109�43 105�40 111�43

Data are presented as no. (%) or mean�SD. Treadmill exercise
time�maximal interval for phase 2 (seconds)�SD (seconds). ACE indicates
angiotensin-converting enzyme; CABG, coronary artery bypass graft; LVEF, left
ventricular ejection fraction; MI, myocardial infarction; PCI, percutaneous
coronary intervention.
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simplified in a figure plotting the minimal depth of a variable
from the tree trunk. Second, RSF do not require analysts to
know in advance the relationship (ie, linear, nonlinear) of a
variable over time or to choose the best equation to transform
nonlinear covariates. Third, the complex interactions among
multiple variables can be easily understood with RSF, using
plots such as those shown in Figures 5 and 6. Finally, the
overall accuracy of an RSF model is at least comparable to
standard methodologies.14

RSF is a new, robust extension of random forest, a
well-known and highly used machine learning method, and
has been used successfully in several applied settings, includ-
ing staging esophageal cancer26,27 and genomics.28 Machine
learning involves use of computers to generate “automatic
techniques for learning to make accurate predictions based on
past observations.”29 All variables collected can be used for
the survival analysis, and the method for variable selection is
intuitive and has been shown to outperform parametric
methods as well as other state-of-the-art machine learning
methodologies.20 RSF do not rely on P values, and analysts

do not need to select important variables in advance with
methods like stepwise regression, inspect for residuals, or
include interactions. Several large studies (using simulations
and real data) have now compared RSF to other methods,
including Cox regression, and these have shown RSF to be
consistently better than, or at least as good as, competing
methods.14,18 Since the introduction of random forest to the
machine learning community almost 10 years ago,30 there
have been efforts to document its empirical performance. Our
results confirm what has generally been found: random forest
produces accurate prediction.14,18 Our study, using a large cohort
of consecutive patients with heart failure with very low loss of
follow-up, showed that the RSF model was at least as good as
Cox regression with respect to survival prediction. More
studies are needed to compare RSF to Cox regression to
further document their performance in clinical settings.

The major limitation of our study is that we have not
validated either RSF or our Cox proportional hazard model
with an external cohort from another advanced heart failure
center. Although RSF effectively validate the model by

Figure 3. Illustration of 6 random trees
from our 2000-tree forest. The 3 most
important variables among these trees
are color coded blue for treadmill exer-
cise time, red for peak V̇O2, and green
for BUN.
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creating trees with a random group of patients and variables,
the model is still deriving these trees from the original data
set, and performance with an external cohort will need to be
assessed. Other limitations include the fact that more vari-
ables could be included and that variables commonly ac-
cepted as predictors of survival, such as serum B-type
natriuretic peptides, were not routinely obtained at our center
between 1997 and 2007. Biventricular pacemakers also were
not reported separately during database entry, but most were
identified in the ICD category because at our institution,
biventricular pacemakers were almost always implanted with
an ICD. We cannot account for variables that change with
time that may affect mortality, and we plan further work on

developing capabilities to analyze time-dependent covariates.
However, the majority of the limitations described herein,
with the exception of the need to externally validate, are what
limit our survival model from possibly being better than other
survival models, but they do not prevent a fair comparison of
RSF to a Cox proportional hazard model.

In summary, we found in a large, single-center cohort of
patients with severe systolic heart failure that RSF identified
similar risk factors to predictors of all-cause mortality and
that an RSF model performed as well as the traditional Cox
proportional hazard model. The RSF method holds promise
as an intuitive approach for variable selection and as a way to
eliminate the mistrust in the black box approach to statistical
analysis.
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