
Introduction to causal discovery: The temporal PC algorithm

Anne Helby Petersen

Tiered/temporal background information

Setup: All variables can be assigned to a tier (e.g. period), and we know the ordering of these tiers.

The temporal PC algorithm (TPC)

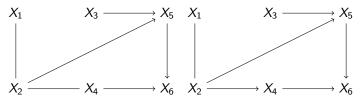
Tiered background information may be used in two ways in the PC algorithm:

- **1** We can **skip certain statistical tests**: If S is a set of variables d-separating X and Y, S cannot be later than both X and Y. Hence we do not have to test $X \perp\!\!\!\perp Y \mid S$.
- **2** We can **orient cross-tier edges**: If X is temporally prior to Y, we can rule out the orientation $Y \to X$.

These ideas were originally proposed by Spirtes, Glymour & Scheines (2000), and a specific TPC algorithm implementation was proposed by Petersen, Osler & Ekstrøm (2021).

Two (similar) R-implementations available: causalDisco (Petersen 2022) and tpc (Witte & Foriatta 2023)

Temporal Peter-Clark (TPC) algorithm summary


Input: Information about conditional independencies and tiered background information on the variables.

- Start with fully connected undirected graph
- Repeat: For each pair of variables (A, B), look for separating sets S among variables adjacent to A or B which are not later than both A and B in the temporal ordering s.t. A ⊥⊥ B | S. If such an S exists: Remove edge between A and B.
- First, orient cross-tiers edges according to time. Then, orient v-structures whenever this does not induce orientations against the direction of time. Finally, recursively apply Meek's three orientation rules.

Output: **Tiered** partially directed acyclic graph (TPDAG)

Tiered partially directed acyclic graphs

- Edges of a TPDAG may be interpreted as for a CPDAG: Oriented edges are direct causal relationships, unoriented edges represent ambiguity about the edge orientation among the possible DAGs it represents.
- A TPDAG is more informative than a CPDAG, and no longer represents a (full) DAG equivalence class.
- A TPDAG is a type of maximal partially directed acyclic graph (MPDAG) (Bang & Didelez 2023).
- For MPDAGs, results concerning e.g. adjustment exist (Perkovic, Kalisch & Maathuis 2017).

TPC properties

- If the tiered background knowledge is correct, TPC inherits its correctness directly from PC (Bang et al. 2024).
- The TPC algorithm is complete: No further causal information can be derived from the combination of conditional independence information and tiered background knowledge (Bang et al. 2024).
- With perfect conditional independence information, only Meeks 1st rule (avoiding introducing new v-structures directly) is invoked (Bang & Didelez 2023). Unclear what happens on finite data.
- Conjecture: TPC results in less statistical error skipping unnecessary tests is a more efficient use of data.

References

Bang & Didelez (2023). Do we become wiser with time? On causal equivalence with tiered background knowledge. In *Proceedings of Uncertainty in Artificial Intelligence*.

Bang, Witte, Foraita & Didelez (2024). Improving finite sample performance of causal discovery by exploiting temporal structure. *arXiv preprint:* arXiv:2406.19503.

Perkovic, Kalisch & Maathuis (2017). Interpreting and using CPDAGs with background knowledge. In *Proceedings of Uncertainty in Artificial Intelligence*.

Petersen (2022). causalDisco: Tools for Causal Discovery on Observational Data. R package available on CRAN.

Spirtes, Glymour & Scheines (2000). Causation, Prediction, and Search.

Witte & Foraita (2023). tpc: Tiered PC Algorithm. R package available on CRAN.

