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Outline of today’s topics

Part 1: Modeling cultures, model (Mark Bech Knudsen)
selection and decision trees

Part 2: From trees to forests, and (Helene Rytgaard)
recap on classical machine
learning techniques

Part 3: Tuning random forests (Mark Bech Knudsen)

Part 4: Variable importance and (Helene Rytgaard)
interpretable machine
learning tools
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Software Overview

Outcome
Package Conti-

nuous
Binary Survival Comp.

risks
Method

rpart1 X X X Tree
randomForest2 X X Forest
party3 X X X Tree/Forest
randomForestSRC4 X X X X Forest
ranger5 X X X Forest

1rpart Therneau, Atkinson and Ripley
2randomForest Liaw and Wiener (based on Breiman and Cutler)
3ctree, cforest Hothorn
4rfsrc Ishwaran
5ranger Wright and Ziegler
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Two modeling cultures
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The two cultures

In a very influential commentary6, Leo Breiman outlines two
dominant modeling cultures.

For a response variable Y and predictors X , we imagine the world
as the following diagram:

X nature Y

The goal of a data analysis is generally one or both of
▸ Prediction: For a given X , what is Y likely going to be?
▸ Information: By which ”mechanism” is nature associating X

to Y ?
▸ Which components of X are most important, and how strong

is the association?

6Leo Breiman, ”Statistical Modeling: The Two Cultures”, Statist. Sci.
16(3), 199-231, 2001.
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The data modeling culture

The data modeling culture starts by assuming a model

Y = f (X ,parameters,noise)

where the function f is chosen by the analyst.

X

linear regression
logistic regression
Cox regression

Y

The goal is to estimate the parameters, which encode information
about how X relates to Y . Afterwards, the model can also be used
for prediction.

The data modeling culture has historically been very dominant.
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The algorithmic modeling culture

The algorithmic modeling culture regards nature as unknown. Uses
data to find f (X ) which predicts Y with high accuracy.

X unknown Y

f (X ) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

decision trees
forests
neural nets

The algorithmic modeling culture has historically played a very
minor role. Nowadays very important (machine learning, AI).
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Epo case study

Anemia is a deficiency of red blood cells and/or hemoglobin and an
additional risk factor for cancer patients.

Randomized placebo controlled trial7: does treatment with epoetin
beta – epo – (300 U/kg) enhance hemoglobin concentration level
and improve survival chances?

Henke et al. 2006 identified the c20 expression (erythropoietin
receptor status) as a new biomarker for the prognosis of
locoregional progression-free survival.

7Henke et al. Do erythropoietin receptors on cancer cells explain
unexpected clinical findings? J Clin Oncol, 24(29):4708-4713, 2006.
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Treatment

The study includes 149 head and neck cancer patients8 with a
tumor located in the oropharynx (36%), the oral cavity (27%), the
larynx (14%) or in the hypopharynx (23%).

Resection
Complete Incomplete No

Placebo 35 14 25
Epo 36 14 25

8with non-missing blood values
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Outcome

Blood hemoglobin levels were measured weekly during radiotherapy
(7 weeks).

Treatment with epoetin beta was defined successful when the
hemoglobin level increased sufficiently. For patient i set

Yi =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 treatment successful
0 treatment failed
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Predictors

Age min: 41 y, median: 59 y, max: 80 y
Gender male: 85%, female: 15%
Base hemoglobin mean: 12.03 g/dl, std: 1.45
Treatment epo: 50%, placebo 50%
Resection complete: 48%, incomplete: 19%,

no resection: 34%
Epo receptor status neg: 32%, pos: 68%
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Goal of analysis

Want to know: Is treatment with epo more likely to increase
hemoglobin levels sufficiently compared to placebo?

Also: predict probability of hemoglobin increase given predictor
variables.
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Logistic regression (data modeling
culture)
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Logistic regression

For binary outcome it is common to use logistic regression:

P(Y = 1) = f (X ,parameters) = 1
1 + e−(𝛽0+𝛽1X1+⋅⋅⋅+𝛽pXp)

Parameters 𝛽k have interpretation as (log) odds-ratios.

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
X

P
(Y

 =
 1

)
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Logistic regression results

We fit a logistic regression with all covariates (no interactions).

Covariate OddsRatio CI.95 pValue

(Intercept) 0.00 0.0040

age 0.97 [0.91; 1.03] 0.2807

sexmale 0.21 [0.038; 1.10] 0.0657

HbBase 3.26 [1.99; 5.91] <0.0001

TreatPlacebo 0.01 [0.0020; 0.042] <0.0001

ResectionIncompl 0.42 [0.083; 1.96] 0.2801

ResectionNo 0.24 [0.058; 0.89] 0.0395

Receptorpositive 5.81 [1.72; 23.39] 0.0076

Epo treated has much higher odds of hemoglobin level increase. Does that
mean everyone should be treated?
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The model provides information for a single patient

For example: the predicted probability that a 48 year old male with
no tumor resection, negative receptor status and baseline
hemoglobin level 10.8 g⇑dl reaches the target hemoglobin level
(Yi = 1) is

Epo treatment: 16.9%
Placebo group: 0.2%

If a similar patient has baseline hemoglobin level 12.8 g⇑dl then the
model predicts:

Epo treatment: 68.4%
Placebo group: 2.3%
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Model selection

Very many different ”logistic regression models” can be constructed
by selecting subsets of variables, transformations, and interactions
of variables.

For example, should we include age, since it is not statistically
significant?

Backward elimination iteratively removes covariate with highest
p-value (if above 0.05).

library(rms)
mod_all <- lrm(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=Epo)
fastbw(mod_all)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
age 1.16 1 0.2807 1.16 1 0.2807 -0.84
Resection 3.75 2 0.1532 4.92 3 0.1781 -1.08
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Reduced model
Then refit model with reduced covariates:

mod_bw <- lrm(Y∼sex+HbBase+Treat+Receptor,data=Epo)

Covariate OddsRatio (Full) CI.95 pValue
(Intercept) 0.00 (0.00) <0.0001
sexmale 0.16 (0.21) [0.032; 0.74] 0.0213
HbBase 3.22 (3.26) [2.02; 5.62] <0.0001
TreatPlacebo 0.02 (0.01) [0.0039; 0.054] <0.0001
Receptorpositive 4.49 (5.81) [1.45; 15.90] 0.0129

Predictions for the 48 year old male from previously:

Full model Reduced model
Epo 16.9% 24.1%
Placebo 0.2% 0.5%

Is ad-hoc model selection a good idea?
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Sensitivity to small changes

We randomly select 130 patients out 149 and do as before (fit full
model and run backward elimination).

set.seed(1) # Controls randomness
Epo_sub <- Epo[sample(149, 130),]
mod_sub_all <- lrm(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=

Epo_sub)
fastbw(mod_sub_all)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
age 0.96 1 0.3264 0.96 1 0.3264 -1.04
sex 2.07 1 0.1501 3.03 2 0.2193 -0.97

Factors in Final Model

[1] HbBase Treat Resection Receptor

Different variables are removed from the model!
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Predict chance of treatment success for new patient

newpatient

age sex HbBase Treat Resection Receptor
1 48 male 10.8 Epo No negative

library(riskRegression)
mod_sub_bw <- lrm(Y∼HbBase+Treat+Resection+Receptor, data=Epo_sub)
predictRisk(mod_sub_bw, newpatient)

[1] 0.2013964
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Exercise

Load the Epo data into R:

Epo <- read.csv(
"https://biostatistics.dk/teaching/advtopics/data/Epo.csv",
stringsAsFactors=TRUE)

newpatient <- read.csv(
"https://biostatistics.dk/teaching/advtopics/data/newpatient.csv",
stringsAsFactors=TRUE)

▸ Choose your favorite seed to generate a subsample (n=130) of
the Epo data

▸ Run backward elimination with function rms::fastbw
▸ Predict the outcome for the new patient
▸ Report the selected variables and the predicted risk
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When to do regression?

”Standard” multiple (logistic) regression works if
▸ the number of predictors is not too large, and substantially

smaller than the sample size
▸ the decision maker has a priori knowledge about which

variables to put into the model

Ad-hoc model selection algorithms, like automated backward
elimination, do not lead to reproducible prediction models or
selected covariate sets!
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Decision trees (algorithmic modeling
culture)
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Classification and regression trees
library(party)
plot(ctree(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=Epo))
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A deeper more greedy tree
library(party)
plot(ctree(Y∼age+sex+HbBase+Treat+Resection+Receptor,data=Epo,controls=

ctree_control(mincriterion = .01)))
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Classification trees

A tree model is a form of recursive partitioning.

It lets the data decide which variables are important and where to
place cut-offs in continuous variables.

In general terms, a tree-building algorithm attempts to determine a
set of splits that permit accurate prediction or classification of
cases.

In other words: a tree can be thought of as a sequence of many
medical tests.
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Roughly, the algorithm works as follows:

1. Find the predictor so that the best possible split on that
predictor optimizes some statistical criterion over all possible
splits on the other predictors.

2. For ordinal and continuous predictors, the split is of the form
X < c versus X ≥ c .

3. Repeat step 1 within each previously formed subset.
4. Proceed until fewer than k observations remain to be split, or

until nothing is gained from further splitting, i.e. the tree is
fully grown.

5. The tree is pruned according to some criterion.
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Characteristics of classification trees

▸ Trees are specifically designed for accurate
classification/prediction

▸ Results have a graphical representation and are easy to
interpret

▸ No model assumptions
▸ Recursive partitioning can identify complex interactions
▸ One can introduce different costs of misclassification in the

tree
But:
▸ Trees are not robust against even small perturbations of the

data (like backward elimination)
▸ It is quite easy to over-fit the data
▸ Trees are weak learners
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A Conversation of Richard Olshen with Leo Breiman

. . .

Olshen: What about arcing, bagging
and boosting?
Breiman: Okay. Yeah. This is
fascinating stuff, Richard. In the last
five years, there have been some really
big breakthroughs in prediction. And
I think combining predictors is one
of the two big breakthroughs. And
the idea of this was, okay, that
suppose you take CART, which is a
pretty good classifier, but not a great
classifier. I mean, for instance, neural
nets do a much better job.
Olshen: Well, suitably trained?
Breiman: Suitably trained.
Olshen: Against an untrained
CART?

Breiman: Right. Exactly. And I think
I was thinking about this. I had
written an article on subset selection
in linear regression. I had realized
then that subset selection in linear
regression is really a very unstable
procedure. If you tamper with the
data just a little bit, the first best five
variable regression may change to
another set of five variables. And so I
thought, “Okay. We can stabilize
this by just perturbing the data a
little and get the best five variable
predictor. Perturb it again. Get
the best five variable predictor
and then average all these five
variable predictors.” And sure
enough, that worked out beautifully.
This was published in an article in the
Annals (Breiman, 1996b).

. . .
Statist. Sci. Volume 16, Issue 2 (2001), 184-198.
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Random forests
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Outline of today’s remaining topics

Part 1: Modeling cultures, model (Mark Bech Knudsen)
selection and decision trees

Part 2: From trees to forests, and (Helene Rytgaard)
recap on classical machine
learning techniques

Part 3: Tuning random forests (Mark Bech Knudsen)

Part 4: Variable importance and (Helene Rytgaard)
interpretable machine
learning tools
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From trees to forests

Decision trees are nice because:

▸ They produce results that are easy to interpret
▸ They require no model assumptions

But:

▸ They easily overfit the data
▸ Trees are weak learners

A random forest is a machine learning method that combines a
large collection of decision trees to construct a strong learner
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Machine learning versus classical statistics

When does it make sense to apply "machine learning"?

▸ Little knowledge of the system we wish to analyze
▸ No prespecified hypotheses
▸ Focus on prediction rather than understanding
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Machine learning as a powerful prediction tool

What is prediction?

BLACK BOX b

New patient

Data

Prediction
function

What is the
probability

that treatment
is succesful for
new patient?
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Why do we need prediction in medical research? (Ex. 1)

Combined test at 12-week pregnancy scan

▸ the age of the mother, a blood sample and a measurement of
fetus’ neck are combined to provide a prediction of the risk of
the baby having Down’s syndrome, Edwards’ syndrome or
Patau’s syndrome

▸ those with higher-risk results can have a subsequent diagnostic
test that can tell for sure if the baby has Down’s syndrome,
Edwards’ syndrome or Patau’s syndrome but can in rare cases
cause miscarriage
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Why do we need prediction in medical research? (Ex. 2)

Early detection of diabetic retinopathy

▸ Diabetic retinopathy is a leading cause of blindness
▸ Diabetic retinopathy may go unnoticed until it is too late for

effective treatment
▸ A prediction model based on fundus photography data can

help detect patients with diabetic retinopathy in time for
effective therapeutic intervention
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Why do we need prediction in medical research? (Ex. 3)

Prediction of long-term survival after esophagectomy

▸ Esophagectomy is a highly invasive surgical treatment
▸ A prediction model can combine multiple risk factors to

provide personalized survival predictions
▸ This can further enable identification of high-risk patients for

enhanced surveillance and/or treatment intensification
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Why do we need prediction in medical research? (Ex. 4)

Cancer class classification

▸ Accurate cancer classification can be used to target specific
therapies to distinct tumor types

▸ A prediction model can be used to provide a data-based
classification algorithm based on gene expression monitoring9

9this is where we will end today, using a random forest (n = 38, p = 3051)
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Random forests as a classical machine learning method

1. Let’s try to understand what goes on inside the forest
▸ Recap on basic machine learning techniques

2. Applying random forests
▸ Hyperparameter selection/tuning

3. Interpretability of random forests10

▸ Variable importance
▸ Partial Dependence Plots (PDPs)

10(and machine learning in general)
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From trees to forests
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From trees to forests

What is a forest11 . . .

A random forest combines the information from a collection of
weak learners = randomized decision trees

1. Each tree is built on a bootstrap sample of the data
2. Only a small number of randomly selected predictor variables

are used to find the best split of each node

The forest predictions are averages over the individual trees

11Leo Breiman (2001). "Random Forests". Machine Learning 45 (1), 5-32,
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning
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Trees are built on bootstrapped subsamples of the data

The purpose of bootstrapping is to create new pseudo samples,
each of which will be used to fit a tree

full data

bootstrap sample

random
draw

bootstrap sample

random
draw

bootstrap sample

random
dddraw
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Trees are built on bootstrapped subsamples of the data

Each time we draw a random bootstrap sample:

bootstrap OOB

full data

random

inbag : subjects in the bootstrap sample

oob : subjects not in the bootstrap sample
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Bootstrapping

There are n = 149 subjects in the Epo data

n <- nrow(Epo)

Let’s get a bootstrap sample (of same size) of these subjects
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Bootstrapping

Everything depends on the seed:

set.seed(5)

We draw a bootstrap sample of size n:

bootstrap.sample <- sample(1:n, n, replace=TRUE)

Who is included in the bootstrap sample (look at first six)?

head(table(bootstrap.sample))

bootstrap.sample
2 3 4 5 6 8
1 1 3 1 1 3
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Bootstrapping

Is subject i = 15 in this bootstrap sample?

15 %in% bootstrap.sample

[1] TRUE

Is subject i = 15 inbag or oob (out-of-bag)?
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Bootstrapping

Each time a patient is left oob, we can compare the prediction for
this patient with the outcome that was observed for sample patient

▸ model validation (which we get back to)

▸ variable importance measures (which we get back to)
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning
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A tree is a nearest neighbor method

Say we only have access to two predictors of the Epo dataset:

age HbBase
1 70 10.7
2 68 12.7
3 70 13.4
4 55 12.0
5 69 11.2
6 59 13.5

We want to estimate the probability:

P(Y = 1 ⋃︀ age,HbBase)
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A tree is a nearest neighbor method

In the following, I have cheated

I have simulated data to imitate the Epo data

So I know the true P(Y = 1 ⋃︀ age,HbBase)
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A tree is a nearest neighbor method
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A tree is a nearest neighbor method

Grow a tree to fit P(Y = 1 ⋃︀ age,HbBase)
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A tree is a nearest neighbor method
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A tree is a nearest neighbor method
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A tree is a nearest neighbor method
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2. Nearest neighbor smoothing

3. Ensemble learning
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A forest is a weighted nearest neighbor method

A forest takes the nearest neighbors from each tree (new tree, new
seed, new bootstrap sample) to define "weighted nearest
neighbors"
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A forest is a weighted nearest neighbor method

Now, combine trees to fit P(Y = 1 ⋃︀ age,HbBase)

57 / 135
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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Random trees and forests in R

Load the package:

library("randomForestSRC")

We will start by using the software to grow single trees

tree1 <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection,

Epo, # data
ntree=1, # only 1 tree!
seed=1) # the result depends on seed
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Random trees and forests in R

Prediction and the oob prediction, e.g., for individual i = 89:

tree1$predicted[89]

[1] 0.7777778

tree1$predicted.oob[89]

[1] NA

. . . individual i = 89 was inbag
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Exercise: From trees to forests

In this exercise, we will use the rfsrc() function from the
randomForestSRC package to grow single trees

▸ The point is to assess stability of tree and forest predictions

The exercise is described in random-forest-exercises.pdf
▸ Exercise 1: From trees to forests
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Exercise: From trees to forests (result plot)

M <- 1000
pred <- rep(0, M)

for (ii in 1:M) {
tree1 <- rfsrc(Y∼age+sex+HbBase+Treat+Resection,

Epo, ntree=1, seed=ii)
pred[ii] <- tree1$predicted.oob[25]

}

pred.mean <- sapply(1:M, function(ii) {
mean(na.omit(pred[1:ii]))

})
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Exercise: From trees to forests (result plot)

plot(pred.mean)
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Exercise: From trees to forests (remark)

Here we produced the forest prediction ourselves across an
increasing number of trees

In real life we use the implementation in R to do this automatically.
Here we use 1000 trees by specifying the argument ntree=1000:

rf1 <- rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo, ntree=1000, seed=5)

This gives us directly the forest prediction:

rf1$predicted.oob[25]

[1] 0.7528273
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From trees to forests
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From trees to forests
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Prediction accuracy

Measuring and comparing performances of machine
learning models
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Outline of today’s remaining topics

Part 1: Modeling cultures, model (Mark Bech Knudsen)
selection and decision trees

Part 2: From trees to forests, and (Helene Rytgaard)
recap on classical machine
learning techniques

Part 3: Tuning random forests (Mark Bech Knudsen)

Part 4: Variable importance and (Helene Rytgaard)
interpretable machine
learning tools
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Predictive accuracy

Combined test at 12-week pregnancy scan

▸ accurate prediction is important to avoid recommending
unneeded invasive subsequent diagnostic test

Early detection of diabetic retinopathy

▸ accurate prediction is important to discover as many patients
as possible in time for effective treatment

Prediction of long-term survival after esophagectomy

▸ accurate prediction is important to correctly identify and
attend to as many high-risk patients as possible
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Predictive accuracy

Patient no. Treatment successful Predicted probability

1 0 P1

2 0 P2

3 1 P3

4 1 P4

5 0 P5

6 1 P6

7 1 P7

⋅ ⋅ ⋅
⋅ ⋅ ⋅
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Prediction error and predictive accuracy

Prediction error is measured in terms of some distance12 between:

1) the observed outcome: Yi

2) and the predicted probability: P̂i = P̂(Yi = 1 ⋃︀ agei ,HbBasei , ...)

One example of a loss function is the squared error loss:

L (Yi , P̂i) = (Yi − P̂i)2

12Measured in terms of a loss function
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Prediction error and predictive accuracy

Machine learning 101

To estimate the prediction error correctly, we cannot train the
model and assess the model on the same data
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Prediction error and predictive accuracy

Overfitting happens when a model learns the detail and noise in the
data too well so that it negatively impacts the performance of the
model on new data
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Prediction error and predictive accuracy

To do it correctly, we can use sample splitting:

1. I create and fit my model on the training data: P̂train

2. I check the quality of my model on the validation data
▸ Average of L (Yi , P̂

train
i ) in validation sample
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Prediction error and predictive accuracy

Let’s compare the predictions from 1 tree to those
from a forest of 100 trees

Fix seed:

set.seed(5)

Take 10 % of original data to be our validation set:

val.set <- sample(1:n, n/10, replace=FALSE)

The rest comprise our training data:

train.set <- (1:n)[!(1:n) %in% val.set]
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Prediction error and predictive accuracy

Fit 1 tree on the training data:

tree1.train <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection,

Epo[train.set,],
ntree=1, seed=1)

Fit a forest of 100 trees on the training data:

forest.train <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection,

Epo[train.set,],
ntree=100, seed=1)
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Prediction error and predictive accuracy

Predict from the tree model on the validation set:

tree1.val <- predict(tree1.train,
newdata=Epo[val.set,],
type="response")$predicted

Predict from the forest model on the validation set:

forest.val <- predict(forest.train,
newdata=Epo[val.set,],
type="response")$predicted
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Prediction error and predictive accuracy

We define the loss function:

loss.fun <- function(Y, Phat) mean((Y-Phat)^2)

Now we can compare performance:

print(rbind(
"1 tree " = loss.fun(Epo[val.set, ]$Y, tree1.val),
"forest " = loss.fun(Epo[val.set, ]$Y, forest.val))
)

[,1]
1 tree 0.1443149
forest 0.0726101

Which one seems to perform best?
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Prediction error and predictive accuracy

In practice, the splitting of data is not done once

. . . but several times. This is called V -fold cross-validation
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Prediction error and predictive accuracy

The same technique is used inside the forest!

▸ The oob prediction for
patient i only uses the trees
built on bootstrap samples
where patient i was left oob

bootstrap OOB

full data

random

▸ The oob prediction error is
estimated by:

⇓erroroob =
1
n

n

∑
i=1

L (Yi , P̂
oob
i )
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Prediction error and predictive accuracy

rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo, ntree=100, seed=1)

Sample size: 149
Number of trees: 100

Forest terminal node size: 5
Average no. of terminal nodes: 12.85

No. of variables tried at each split: 2
Total no. of variables: 5

Resampling used to grow trees: swor
Resample size used to grow trees: 94

Analysis: RF-R
Family: regr

Splitting rule: mse *random*
Number of random split points: 10

% variance explained: 58.37
Error rate: 0.1
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Picking the random forest model

Hyperparameter tuning
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Picking the random forest model

The random forest algorithm automatically detects nonlinear
effects, complex interactions, . . .

7.5

10.0

12.5

15.0

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00

Data−generating distribution and observations

7.5

10.0

12.5

15.0

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00

500 trees: estimated probability

81 / 135



Picking the random forest model

But the algorithm involves some choices: hyperparameters!

▸ These can be tuned and lead to different results
▸ These can be tuned to optimize predictive performance
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Hyperparameters of the random forest

ntree the number of trees

mtry only mtry randomly selected predictor variables are
used to find the best split ("split-variable
randomization")

nodesize is connected to the depth of each tree; it specifies the
minimum number of observations that must be
remain to perform a split
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Applying a random forest

library("randomForestSRC")

rfsrc(formula,
dataset,
seed = 5,
ntree = 1000, # how many trees
mtry = 3, # number of randomly selected

# variables as candidates for
# splitting a node

nodesize = 5) # how many unique data points
# in each terminal node
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Applying a random forest

We fit a random forest model on the Epo data with 1000 trees,
mtry=3 and nodesize=3:

rf1 <- rfsrc(Y∼age+sex+HbBase+Treat+Resection,
Epo,
seed = 5,
nodesize = 3,
mtry = 3,
ntree = 1000)
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Applying a random forest

Look at predictions (here first 5):

rf1$predicted.oob[1:5]

[1] 0.029569892 0.042219020 0.971616712 0.984539768 0.004933333

The oob prediction for patient 25:

rf1$predicted.oob[25]

[1] 0.7713155

Compare to what was observed for this patient:

Epo[25, "Y"]

[1] 1
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Predictions on new data

newpatient

age sex HbBase Treat Resection Receptor
1 48 male 10.8 Epo No negative

87 / 135



Predictions on new data

Make predictions for this patient:

rf.pred.new <- predict(rf1, newdata=newpatient)

rf.pred.new$predicted

[1] 0.5763333
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Exercise: Get predictions for newpatient

In this exercise, we will use the rfsrc() function from the
randomForestSRC package to get forest prediction for newpatient
for different values of hyperparameters

▸ The point is to see how sensitive the forest predictions are to
the choice of hyperparameters

The exercise is described in random-forest-exercises.pdf
▸ Exercise 2: Get predictions for newpatient
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Exercise: Get predictions for newpatient
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Exercise: Get predictions for newpatient

●
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Tuning hyperparameters

Let’s tune the random forest = pick hyperparameters that optimize
predictive accuracy

Look at the estimated error rate across the different choices of
hyperparameters in the exercise:

[,1]
forest (ntree=50) 0.1229789
forest (ntree=100) 0.1225639
forest (ntree=1000) 0.1182131
forest (nodesize=3) 0.1097429
forest (nodesize=5) 0.1055143
forest (mtry=1) 0.1247416
forest (mtry=6) 0.1218394

Which one is the best one?
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Should we tune the number of trees?

Consider the oob predicted errors for a number of different forests:

1 tree: 0.2199
5 trees: 0.1513
10 trees: 0.1366
50 trees: 0.1031
100 trees: 0.1074
150 trees: 0.1055
200 trees: 0.1031
500 trees: 0.1025
1000 trees: 0.1038

Error is minimized at ntree = 500. Better to use less trees?
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Should we tune the number of trees?

One can show13 that increasing ntree always decreases the
theoretical predictive error when using common loss functions (e.g.
squared error).

Advice: do not tune ntree, just choose it ”large enough” such that
the accuracy has stabilized, but not so large that it becomes a
computational issue.

13Philipp Probst and Anne-Laure Boulesteix. To Tune or Not to Tune the
Number of Trees in Random Forest. Journal of Machine Learning Research.
18(181):1-18, 2018
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Tuning hyperparameters

Tuning a model is tedious work . . . there are lot of possible
combinations of the parameters

95 / 135



Tuning hyperparameters

Having chosen a value for ntree, propose (relevant) combinations
of values for mtry and nodesize

hyper.grid <- expand.grid(
mtry = floor((ncol(Epo) - 1) / c(4, 3, 2, 1)),
nodesize = c(1, 3, 5, 10, 20, 30),
ntree = 1000,
oob.error = NA

)
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Tuning hyperparameters
mtry nodesize ntree oob.error

1 1 1 1000 NA
2 2 1 1000 NA
3 3 1 1000 NA
4 6 1 1000 NA
5 1 3 1000 NA
6 2 3 1000 NA
7 3 3 1000 NA
8 6 3 1000 NA
9 1 5 1000 NA
10 2 5 1000 NA
11 3 5 1000 NA
12 6 5 1000 NA
13 1 10 1000 NA
14 2 10 1000 NA
15 3 10 1000 NA
16 6 10 1000 NA
17 1 20 1000 NA
18 2 20 1000 NA
19 3 20 1000 NA
20 6 20 1000 NA
21 1 30 1000 NA
22 2 30 1000 NA
23 3 30 1000 NA
24 6 30 1000 NA
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Tuning hyperparameters

Compute the oob error for all combinations:

for (j in 1:nrow(hyper.grid)) {
tmp.forest <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection,

Epo,
mtry=hyper.grid[j, "mtry"],
nodesize=hyper.grid[j, "nodesize"],
ntree=hyper.grid[j, "ntree"], seed=1)

hyper.grid[j, "oob.error"] <-
loss.fun(Epo$Y, tmp.forest$predicted.oob)

}
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Tuning hyperparameters
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Tuning hyperparameters

Which combination gave the lowest estimated error rate?

hyper.grid[which.min(hyper.grid$oob.error),]

mtry nodesize ntree oob.error
20 6 20 1000 0.1025708
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Tuning hyperparameters

Let’s fit the corresponding, now tuned, forest:

j <- which.min(hyper.grid$oob.error)

j

[1] 20

tuned.rf <-
rfsrc(Y∼age+sex+HbBase+Treat+Resection,

Epo,
mtry=hyper.grid[j, "mtry"],
nodesize=hyper.grid[j, "nodesize"],
ntree=hyper.grid[j, "ntree"], seed=1)
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Tuning hyperparameters for the simulated data
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Tuning hyperparameters for the simulated data

7.5

10.0

12.5

15.0

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00

Data−generating distribution and observations

7.5

10.0

12.5

15.0

40 60 80
age

H
bB

as
e

0.00

0.25

0.50

0.75

1.00

Tuned forest

102 / 135



Interpretable machine learning

Variable importance
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Outline of today’s remaining topics

Part 1: Modeling cultures, model (Mark Bech Knudsen)
selection and decision trees

Part 2: From trees to forests, and (Helene Rytgaard)
recap on classical machine
learning techniques

Part 3: Tuning random forests (Mark Bech Knudsen)

Part 4: Variable importance and (Helene Rytgaard)
interpretable machine
learning tools
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Logistic regression

Response: treatment successful yes/no

Covariate OddsRatio CI.95 pValue

(Intercept) 0.00 0.0040

age 0.97 [0.91; 1.03] 0.2807

sexmale 0.21 [0.038; 1.10] 0.0657

HbBase 3.26 [1.99; 5.91] <0.0001

TreatPlacebo 0.01 [0.0020; 0.042] <0.0001

ResectionIncompl 0.42 [0.083; 1.96] 0.2801

ResectionNo 0.24 [0.058; 0.89] 0.0395

Receptorpositive 5.81 [1.72; 23.39] 0.0076

105 / 135



Machine learning
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Interpretable machine learning

▸ Decision trees produce results that are easy to interpret

▸ Random forest results, on the other hand, are not per se so
easy to interpret

▸ What predictor variables were important for the prediction?
▸ What effect did the predictor variables have on the prediction?
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Variable importance

How important was a given variable for building the forest model?

We consider two different approaches

1. "VIMP"
2. Minimal depth
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Variable importance

VIMP (Variable IMPortance) is measured by the difference
prediction error between:

▸ running the forest with a ”noised-up” version of X
▸ running the forest with X as was observed

If prediction performance decreases more for variable X1 than for
variable X2, then importance(X1) > importance(X2)
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Variable importance

Recall:

▸ Trees are built by recursive partitioning
▸ They let the data decide which variables are important for

splitting node
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Variable importance

The minimal depth is the average distance from the root node to
the first split on a specific variable

·

·

...
age

...
...

·

...
...

age

...
...

·

age

...
...

...

The smaller the minimal depth, the more important is the variable
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Variable importance
VIMP for the Epo data:

tuned.rf <- rfsrc(Y∼age+sex+HbBase+Treat+
Resection,

Epo,
mtry=hyper.grid[j, "mtry"],
nodesize=hyper.grid[j, "nodesize"],
ntree=hyper.grid[j, "ntree"],
seed=1,
importance=TRUE) # compute vimp

tuned.rf$importance

age sex HbBase Treat Resection
0.07420322 0.00589100 0.23239730 0.36622336 0.02681411

What variables are most important?
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Variable importance

plot(tuned.rf)
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Variable importance

Minimal depth for the Epo data:

age sex HbBase Treat Resection
1.550 3.688 1.300 0.992 2.072

The forest provides a threshold (cut-off) value:

[1] 2.343143

What variables are important?
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Variable importance

What you should not do. . .

rfsrc(Y∼age+sex+HbBase+Treat+Resection+Receptor,
... ,
mtry = 1, # <-- nooo
... )

mtry=1:
mtry1

age 1.688
sex 2.017
HbBase 1.697
Treat 1.867
Resection 1.903

Threshold=

[1] 2.051348

mtry=2:
mtry2

age 1.550
sex 3.688
HbBase 1.300
Treat 0.992
Resection 2.072

Threshold=

[1] 2.343143
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Variable importance measures from random forests

Why is this?

mtry controls split-variable randomization:

▸ for each node only a small number of randomly selected
predictors are used to find the best split of that node (= mtry)

▸ this is done as part of the randomization of trees
▸ (it ensures some of the theoretical properties of the forests)

In fact, if we are interested in variable importance (rather than
predictive accuracy) we should choose a high value for this.
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Variable importance on simulated data

▸ Two uncorrelated variables x1 and x2 with the same effect
▸ One variable c1 correlated with x1 but with no effect
▸ Two correlated variables z1 and z2 with the same effect
▸ Ten noise variables w1,. . . , w10

x1 <- runif(n)
x2 <- runif(n)
z1 <- rnorm(n, mean=0, sd=0.3)
z2 <- rnorm(n, mean=z1+0.1, sd=0.3)
c1 <- rnorm(n, mean=x1+0.1, sd=0.3)
w <- matrix(runif(n*10), ncol=10)
y <- rnorm(n, mean=0.1+2.5*x1+2.5*x2+2.5*z1+2.5*z2)
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Variable importance on simulated data

rf.sim <- rfsrc(y∼x1+x2+c1+z1+z2+
w1+w2+w3+w4+w5+w6+w7+w8+w9+w10,

sim.data,
seed=3, ntree=1000,
importance=TRUE)
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Variable importance on simulated data

▸ Two uncorrelated variables x1 and x2 with the same effect
▸ One variable c1 correlated with x1 but with no effect
▸ Two correlated variables z1 and z2 with the same effect
▸ Ten noise variables w1,. . . , w10
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Exercise: Identifying risk factors with variable importance

In this exercise we will look at the analysis of Hsich et al. (2011):

The exercise is described in random-forest-exercises.pdf
▸ Exercise 3: Identifying risk factors
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Effects of predictor variables on the final prediction

Plots can be useful to assess the effect of predictor variables on the
final prediction.

There are different ways to do so:

Partial Dependence Plots (PDPs)

▸ Average forest predictions as a function of predictor variables
▸ Obtained by marginalizing the forest prediction over the other

features/covariates
▸ Can show if the relationship is linear, monotonic or more

complex

Individual Conditional Expectation (ICE) plots

▸ Looking at the individual predictions as a function of predictor
variables
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Partial Dependence Plots (PDPs)

Say, we want to know how

P̂(Y = 1 ⋃︀ age,Gender,HbBase,Treatment,Resection)

varies when HbBase varies

We can estimate this by:

P̂HbBase(b) = 1
n

n

∑
i=1

P̂(Yi = 1 ⋃︀ agei ,Genderi ,HbBase = b,

Treatmenti ,Resectioni)

▸ We marginalize the forest prediction over the other
features/covariates
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Partial Dependence Plots (PDPs)

In R, we can plot these estimates for all variables by simply writing:

plot.variable(tuned.rf, partial=TRUE, plots.per.page=3)
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Partial Dependence Plots (PDPs)
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Partial Dependence Plots (PDPs)
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Individual Conditional Expectation (ICE) plots

The ICE plot shows the variation of

P̂i
HbBase(b) = P̂(Y = 1 ⋃︀ agei ,Genderi ,HbBase = b,

Treatmenti ,Resectioni)

for each individual i one by one.

▸ This can very useful if there are interactions
▸ Do the curves follow the same course (e.g., changepoints,

linearity, etc) for all individuals?
▸ OBS: Intercept differences are not a sign of interactions
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Individual Conditional Expectation (ICE) plots

ICE plot for HbBase
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Individual Conditional Expectation (ICE) plots

ICE plot for HbBase, colored by Treat
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Individual Conditional Expectation (ICE) plots

PDP plot for HbBase, computed in groups defined by Treat
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Individual Conditional Expectation (ICE) plots

ICE plot for age
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Individual Conditional Expectation (ICE) plots

ICE plot for age, colored by Treat
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Interpretable machine learning

Variable importance measures can tell us what variables seem
important for prediction

▸ Beware of correlated predictors

PDPs and ICE plots can show us how predicted probabilities vary
as a function of predictor values

▸ PDPs show the average variation
▸ Beware of hidden interactions

▸ ICE show the individual variations
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Logistic regression versus
random forests
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Logistic regression versus random forests

When utilizing a logistic regression approach:

▸ We must specify the model14

P̂(Y = 1 ⋃︀ age,Gender,HbBase,Treatment,Resection,Epo)
= expit(𝛽0 + 𝛽1age + 𝛽2age ∶ female +⋯) (∗)

Based on the model we may:
▸ Predict P̂(Y = 1) for a new patient
▸ Interpret odds ratios, conditional on holding the other features

fixed (p-values, confidence intervals, etc)

But all inference relies on (∗) being correct and prespecified

14Interactions, quadratic terms (e.g., age2), . . .
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Logistic regression versus random forests

When utilizing a random forest approach:

▸ The forest automatically detects nonlinear effects and complex
interactions

▸ "Model selection" is comprised by hyperparameter tuning

Based on the model we may:
▸ Predict P̂(Y = 1) for a new patient often with high accuracy
▸ Obtaining interpretable measures from the random forest15 is

applied after model training, e.g.:
▸ Variable importance, PDPs, ICEs, . . .

But, inference (confidence intervals, p-values) is not so obvious
And, beware that everything depends on the random seed

15And other machine learning methods
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Exercise: Predicting tumor class (Golub et al., 1999)

▸ Accurate cancer classification can be used to target specific
therapies to distinct tumor types

▸ We could use a random forest model to provide a data-based
classification algorithm based on gene expression monitoring
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Exercise: Predicting tumor class (Golub et al., 1999)

In this practical we will work with a dataset containing information
on 38 tumor mRNA samples from 38 individuals and the gene
expression values from 3051 genes

We will go through the steps on the lectures slides to explore these
data
▸ The goal of the analysis is to predict the tumor class

The exercise is described in random-forest-exercises.pdf
▸ Exercise 4: Predicting tumor class
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That was it . . .

Comments and suggestions for this material are very much welcome
at hely@sund.ku.dk ,
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