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Qutline of today's topics

Part 1:

Part 2:

Part 3:

Part 4:

Modeling cultures, model
selection and decision trees

From trees to forests, and
recap on classical machine
learning techniques

Tuning random forests

Variable importance and
interpretable machine
learning tools

(Mark Bech Knudsen)

(Helene Rytgaard)

(Mark Bech Knudsen)

(Helene Rytgaard)
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Software Overview

Outcome

Package Conti- Binary Survival Comp. | Method

nuous risks
rpart! X X X Tree
randomForest? X X Forest
party> X X X Tree/Forest
randomForestSRC* | X X X X Forest
ranger® X X X Forest

!rpart Therneau, Atkinson and Ripley

2

3ctree, cforest Hothorn

4rfsrc Ishwaran

®ranger Wright and Ziegler

randomForest Liaw and Wiener (based on Breiman and Cutler)
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Two modeling cultures
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The two cultures

In a very influential commentary®, Leo Breiman outlines two
dominant modeling cultures.

For a response variable Y and predictors X, we imagine the world
as the following diagram:

X — nature —Y

5Leo Breiman, "Statistical Modeling: The Two Cultures’, Statist. Sci.

16(3), 199-231, 2001.
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The two cultures

In a very influential commentary®, Leo Breiman outlines two
dominant modeling cultures.

For a response variable Y and predictors X, we imagine the world
as the following diagram:

X — nature —Y

The goal of a data analysis is generally one or both of
» Prediction: For a given X, what is Y likely going to be?

» Information: By which "mechanism” is nature associating X
to Y7
» Which components of X are most important, and how strong
is the association?

5Leo Breiman, "Statistical Modeling: The Two Cultures’, Statist. Sci.

16(3), 199-231, 2001.
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The data modeling culture

The data modeling culture starts by assuming a model
Y = f (X, parameters, noise)

where the function f is chosen by the analyst.

linear regression
X — logistic regression — Y
Cox regression
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The data modeling culture

The data modeling culture starts by assuming a model
Y = f (X, parameters, noise)

where the function f is chosen by the analyst.

linear regression
X — logistic regression — Y
Cox regression

The goal is to estimate the parameters, which encode information
about how X relates to Y. Afterwards, the model can also be used
for prediction.

The data modeling culture has historically been very dominant.
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The algorithmic modeling culture

The algorithmic modeling culture regards nature as unknown. Uses
data to find f(X) which predicts Y with high accuracy.

unknown Y

decision trees
f(X) = 1 forests

neural nets
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The algorithmic modeling culture

The algorithmic modeling culture regards nature as unknown. Uses
data to find f(X) which predicts Y with high accuracy.

unknown Y

decision trees
f(X) = 1 forests

neural nets

The algorithmic modeling culture has historically played a very
minor role. Nowadays very important (machine learning, Al).
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Epo case study

Anemia is a deficiency of red blood cells and/or hemoglobin and an
additional risk factor for cancer patients.

Randomized placebo controlled trial”: does treatment with epoetin
beta — epo — (300 U/kg) enhance hemoglobin concentration level
and improve survival chances?

Henke et al. 2006 identified the c20 expression (erythropoietin
receptor status) as a new biomarker for the prognosis of
locoregional progression-free survival.

"Henke et al. Do erythropoietin receptors on cancer cells explain

unexpected clinical findings? J Clin Oncol, 24(29):4708-4713, 2006.
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Treatment

The study includes 149 head and neck cancer patients® with a
tumor located in the oropharynx (36%), the oral cavity (27%), the
larynx (14%) or in the hypopharynx (23%).

Resection
Complete Incomplete No
Placebo 35 14 25
Epo 36 14 25

8with non-missing blood values
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Outcome

Blood hemoglobin levels were measured weekly during radiotherapy
(7 weeks).

Treatment with epoetin beta was defined successful when the
hemoglobin level increased sufficiently. For patient /i set

v {1 treatment successful
I':

0 treatment failed
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Predictors

Age

Gender

Base hemoglobin
Treatment
Resection

Epo receptor status

min: 41 y, median: 59 y, max: 80y
male: 85%, female: 15%

mean: 12.03 g/dl, std: 1.45

epo: 50%, placebo 50%

complete: 48%, incomplete: 19%,
no resection: 34%

neg: 32%, pos: 68%

11/135



Goal of analysis

Want to know: Is treatment with epo more likely to increase
hemoglobin levels sufficiently compared to placebo?

Also: predict probability of hemoglobin increase given predictor
variables.
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Logistic regression (data modeling
culture)
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Logistic regression
For binary outcome it is common to use logistic regression:

1

P(Y =1) = f(X, parameters) = 17 o (ot Bt —+5pXp)

Parameters 5y have interpretation as (log) odds-ratios.

1.00
0.75
=
1]
Z_/0.50
o
0.25+
0.00 -
-5.0 -2.5 0.0 25 5.0
X
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Logistic regression results

We fit a logistic regression with all covariates (no interactions).

Covariate OddsRatio  Cl.95 pValue
(Intercept) 0.00 0.0040
age 0.97 [0.91; 1.03] 0.2807
sexmale 0.21 [0.038; 1.10] 0.0657
HbBase 3.26 [1.99; 5.91] <0.0001
TreatPlacebo 0.01 [0.0020; 0.042] <0.0001
Resectionlncompl  0.42 [0.083; 1.96] 0.2801
ResectionNo 0.24 [0.058; 0.89] 0.0395
Receptorpositive  5.81 [1.72; 23.39] 0.0076
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Logistic regression results

We fit a logistic regression with all covariates (no interactions).

Covariate OddsRatio  Cl.95 pValue
(Intercept) 0.00 0.0040
age 0.97 [0.91; 1.03] 0.2807
sexmale 0.21 [0.038; 1.10] 0.0657
HbBase 3.26 [1.99; 5.91] <0.0001
TreatPlacebo 0.01 [0.0020; 0.042] <0.0001
Resectionlncompl  0.42 [0.083; 1.96] 0.2801
ResectionNo 0.24 [0.058; 0.89] 0.0395
Receptorpositive  5.81 [1.72; 23.39] 0.0076

Epo treated has much higher odds of hemoglobin level increase. Does that

mean everyone should be treated?
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The model provides information for a single patient

For example: the predicted probability that a 48 year old male with
no tumor resection, negative receptor status and baseline
hemoglobin level 10.8 g/dl reaches the target hemoglobin level
(Yi=1)is

Epo treatment: 16.9%
Placebo group: 0.2%
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The model provides information for a single patient

For example: the predicted probability that a 48 year old male with
no tumor resection, negative receptor status and baseline
hemoglobin level 10.8 g/dl reaches the target hemoglobin level
(Yi=1)is

Epo treatment: 16.9%
Placebo group: 0.2%

If a similar patient has baseline hemoglobin level 12.8 g/dl then the
model predicts:

Epo treatment: 68.4%
Placebo group: 2.3%
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Model selection

Very many different "logistic regression models” can be constructed
by selecting subsets of variables, transformations, and interactions
of variables.

For example, should we include age, since it is not statistically
significant?
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Model selection

Very many different "logistic regression models” can be constructed
by selecting subsets of variables, transformations, and interactions
of variables.

For example, should we include age, since it is not statistically
significant?

Backward elimination iteratively removes covariate with highest
p-value (if above 0.05).

library(rms)
mod_all <- lrm(Y~aget+sex+HbBase+Treat+Resection+Receptor,data=Epo)
fastbw(mod_all)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
age 1.16 1 0.2807 1.16 1 0.2807 -0.84
Resection 3.75 2 0.1532 4.92 3 0.1781 -1.08
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Reduced model

Then refit model with reduced covariates:

mod_bw <- lrm(Y~sex+HbBase+Treat+Receptor,data=Epo)

Covariate OddsRatio (Full) CI.95 pValue
(Intercept) 0.00 (0.00) <0.0001
sexmale 0.16 (0.21) [0.032; 0.74] 0.0213
HbBase 3.22 (3.26) [2.02; 5.62] <0.0001
TreatPlacebo 0.02 (0.01) [0.0039; 0.054] <0.0001
Receptorpositive  4.49 (5.81) [1.45; 15.90] 0.0129
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Reduced model

Then refit model with reduced covariates:

mod_bw <- lrm(Y~sex+HbBase+Treat+Receptor,data=Epo)

Covariate OddsRatio (Full) CI.95 pValue
(Intercept) 0.00 (0.00) <0.0001
sexmale 0.16 (0.21) [0.032; 0.74] 0.0213
HbBase 3.22 (3.26) [2.02; 5.62] <0.0001
TreatPlacebo 0.02 (0.01) [0.0039; 0.054] <0.0001
Receptorpositive  4.49 (5.81) [1.45; 15.90] 0.0129

Predictions for the 48 year old male from previously:

Full model Reduced model
Epo 16.9% 24.1%
Placebo 0.2% 0.5%

Is ad-hoc model selection a good idea?
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Journal of
Clinical
Epidemiolog)

Journal of Clinical Epidemiology 57 (2004) 1138-1146

Automated variable selection methods for logistic regression produced
unstable models for predicting acute myocardial infarction mortality
Peter C. Austin®>*, Jack V. Tub<de

Abstract

Objectives: Automated variable selection methods are frequently used to determine the independent predictors of an outcome. T
objective of this study was to determine the reproducibility of logistic regression models developed using automated variable selecti
methods.

Study Design and Setting: An initial set of 29 candidate variables were considered for predicting mortality after acute myocard
infarction (AMI). We drew 1,000 bootstrap samples from a dataset consisting of 4,911 patients admitted to hospital with an AMI. Usi
cach bootstrap sample, logistic regression models predicting 30-day mortality were obtained using backward elimination, forward selectic
and stepwise selection. The agreement between the different model selection methods and the agreement across the 1,000 bootstrap samp
were compared,

Results: Using 1,000 bootstrap samples, backward elimination identified 940 unique models for predicting mortality. Similar resu
were obtained for forward and stepwise selection. Three variables were identified as independent predictors of mortality among all bootstr

samples. Over half the candidate prognostic variables were identified as independent predictors in less than half of the bootstrap sampl
Conclusion: Automated variable selection methods result in models that are unstable and not reproducible. The variables selected
independent predictors are sensitive to random fluctuations in the data. © 2004 Elsevier Inc. All rights reserved.

Keywords: Regression models; Multivariate analysis: Variable selection; Logistic regression; Acute infarction; Ej
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Sensitivity to small changes

We randomly select 130 patients out 149 and do as before (fit full
model and run backward elimination).

set.seed(1) # Controls randomness

Epo_sub <- Epol[sample(149, 130),]

mod_sub_all <- lrm(Y~age+sex+HbBase+Treat+Resection+Receptor,data=
Epo_sub)

fastbw(mod_sub_all)
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Sensitivity to small changes

We randomly select 130 patients out 149 and do as before (fit full
model and run backward elimination).

set.seed(1) # Controls randomness

Epo_sub <- Epol[sample(149, 130),]

mod_sub_all <- lrm(Y~age+sex+HbBase+Treat+Resection+Receptor,data=
Epo_sub)

fastbw(mod_sub_all)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
age 0.96 1 0.3264 0.96 1 0.3264 -1.04
sex 2.07 1 0.1501 3.03 2 0.2193 -0.97

Factors in Final Model

[1] HbBase Treat Resection Receptor

Different variables are removed from the model!
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Predict chance of treatment success for new patient

newpatient

age sex HbBase Treat Resection Receptor
1 48 male 10.8 Epo No negative

library(riskRegression)
mod_sub_bw <- lrm(Y~HbBase+Treat+Resection+Receptor, data=Epo_sub)

predictRisk(mod_sub_bw, newpatient)

[1] 0.2013964
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Exercise

Load the Epo data into R:

Epo <- read.csv(
"https://biostatistics.dk/teaching/advtopics/data/Epo.csv",
stringsAsFactors=TRUE)

newpatient <- read.csv(
"https://biostatistics.dk/teaching/advtopics/data/newpatient.csv",
stringsAsFactors=TRUE)

v

Choose your favorite seed to generate a subsample (n=130) of
the Epo data

Run backward elimination with function rms::fastbw

v

v

Predict the outcome for the new patient

v

Report the selected variables and the predicted risk
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When to do regression?

"Standard” multiple (logistic) regression works if

» the number of predictors is not too large, and substantially
smaller than the sample size

> the decision maker has a priori knowledge about which
variables to put into the model

Ad-hoc model selection algorithms, like automated backward
elimination, do not lead to reproducible prediction models or
selected covariate sets!
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Decision trees (algorithmic modeling
culture)
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Classification and regression trees

library(party)
plot(ctree(Y~age+sex+HbBase+Treat+Resection+Receptor,data=Epo))

Placebo

{No, Incompl} Compl <113 >11.3
Node 3 (n = 39 1 Node 4 (n = 35) 1 Node 6 (n = 19) 1 Node 7 (n = 56) 1
) ) o o
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
- o - o - o - 0
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A deeper more greedy tree

library(party)

.01)))

plot(ctree(Y~age+sex+HbBase+Treat+Resection+Receptor,data=Epo,controls=
ctree_control(mincriterion

08
06
04
02
- 0

Placebo

<121

[

Node3(n=39 Node5(n=25 Node6(n=10) Node8(n=19) Nodell(n=27) Node12(n=1}) Node13(n=1g)

08
0.6
04
0.2
0

0.8
0.6
0.4
0.2
0

>113

pa/smve negative

08
0.6
04
0.2
0

08
0.6
0.4
0.2
0

0.8
0.6
04
0.2
0
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Classification trees

A tree model is a form of recursive partitioning.

It lets the data decide which variables are important and where to
place cut-offs in continuous variables.

In general terms, a tree-building algorithm attempts to determine a
set of splits that permit accurate prediction or classification of
cases.

In other words: a tree can be thought of as a sequence of many
medical tests.
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Roughly, the algorithm works as follows:

1. Find the predictor so that the best possible split on that
predictor optimizes some statistical criterion over all possible
splits on the other predictors.

2. For ordinal and continuous predictors, the split is of the form
X < c versus X > c.

3. Repeat step 1 within each previously formed subset.

4. Proceed until fewer than k observations remain to be split, or
until nothing is gained from further splitting, i.e. the tree is
fully grown.

5. The tree is pruned according to some criterion.
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Characteristics of classification trees

» Trees are specifically designed for accurate
classification/prediction

v

Results have a graphical representation and are easy to
interpret

v

No model assumptions
» Recursive partitioning can identify complex interactions

» One can introduce different costs of misclassification in the
tree

But:

» Trees are not robust against even small perturbations of the
data (like backward elimination)

» It is quite easy to over-fit the data

> Trees are weak learners
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Olshen: What about arcing, bagging
and boosting?

Breiman: Okay. Yeah. This is
fascinating stuff, Richard. In the last
five years, there have been some really
big breakthroughs in prediction. And
| think combining predictors is one
of the two big breakthroughs. And
the idea of this was, okay, that
suppose you take CART, which is a
pretty good classifier, but not a great
classifier. | mean, for instance, neural
nets do a much better job.

Olshen: Well, suitably trained?
Breiman: Suitably trained.

Olshen: Against an untrained
CART?

A Conversation of Richard Olshen with Leo Breiman

Breiman: Right. Exactly. And | think
| was thinking about this. | had
written an article on subset selection
in linear regression. | had realized
then that subset selection in linear
regression is really a very unstable
procedure. If you tamper with the
data just a little bit, the first best five
variable regression may change to
another set of five variables. And so |
thought, “Okay. We can stabilize
this by just perturbing the data a
little and get the best five variable
predictor. Perturb it again. Get
the best five variable predictor
and then average all these five
variable predictors.” And sure
enough, that worked out beautifully.
This was published in an article in the
Annals (Breiman, 1996b).

Statist. Sci. Volume 16, Issue 2 (2001), 184-198.
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Random forests
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Qutline of today's remaining topics

Part 2:

Part 3:

Part 4:

From trees to forests, and  (Helene Rytgaard)
recap on classical machine
learning techniques

Tuning random forests (Mark Bech Knudsen)

Variable importance and (Helene Rytgaard)
interpretable machine
learning tools
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From trees to forests

Decision trees are nice because:

» They produce results that are easy to interpret

» They require no model assumptions

But:

» They easily overfit the data

» Trees are weak learners

A random forest is a machine learning method that combines a
large collection of decision trees to construct a strong learner
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Machine learning versus classical statistics

When does it make sense to apply "machine learning"?

» Little knowledge of the system we wish to analyze

> No prespecified hypotheses

» Focus on prediction rather than understanding

Without Machine Learning

* VERY SPECIFIC
INSTRUCTIONS

With Machine Learning

34/135



Machine learning as a powerful prediction tool

What is prediction?

BLACK BOX

N

New patient

‘What is the
probability
that treatment
is succesful for
new patient?

Prediction
function
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Why do we need prediction in medical research? (Ex. 1)

Combined test at 12-week pregnancy scan

» the age of the mother, a blood sample and a measurement of
fetus' neck are combined to provide a prediction of the risk of
the baby having Down's syndrome, Edwards’ syndrome or
Patau's syndrome

» those with higher-risk results can have a subsequent diagnostic
test that can tell for sure if the baby has Down’s syndrome,
Edwards’ syndrome or Patau's syndrome but can in rare cases
cause miscarriage

36 /135



Why do we need prediction in medical research? (Ex. 2)

Early detection of diabetic retinopathy

» Diabetic retinopathy is a leading cause of blindness

» Diabetic retinopathy may go unnoticed until it is too late for
effective treatment

» A prediction model based on fundus photography data can
help detect patients with diabetic retinopathy in time for
effective therapeutic intervention

OPEN @ ACCESS Freely available online @PLOS | one

Application of Random Forests Methods to Diabetic
Retinopathy Classification Analyses

Ramon Casanova'*, Santiago Saldana', Emily Y. Chew?, Ronald P. Danis?, Craig M. Greven®,
Walter T. Ambrosius’

1 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 2 National Eye Institute, National
Institutes of Health [NIH], Bethesda, Maryland, United States of America, 3 Fundus Photograph Reading Center, University of Wisconsin, Madison, Wisconsin, United States
of America, 4 Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America 37 / 135



Why do we need prediction in medical research? (Ex. 3)

Prediction of long-term survival after esophagectomy

» Esophagectomy is a highly invasive surgical treatment
» A prediction model can combine multiple risk factors to
provide personalized survival predictions

» This can further enable identification of high-risk patients for
enhanced surveillance and/or treatment intensification

The AUGIS Survival Predictor

Prediction of Long-term and Conditional Survival after Esophagectomy
Using Random Survival Forests

Rahman, Saqib A. MRCS™T; Walker, Robert C. MRCS™; Maynard, Nick FRCS'; Trudgill, Nigel MBBS¥; Crosby, Tom
FRCPS; Cromwell, David A. PhDT; Underwaod, Timothy J. PhD" on behalf of the NOGCA project team AUGIS

Author Information®

Annals of Surgery: February 17, 2021 - Volume - Issue - 38/135



Why do we need prediction in medical research? (Ex. 4)

Cancer class classification

» Accurate cancer classification can be used to target specific
therapies to distinct tumor types

> A prediction model can be used to provide a data-based
classification algorithm based on gene expression monitoring®

Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene
Expression Monitoring

T. R. Golub,"?*{ D. K. Slonim,'} P. Tamayo, C. Huard,’
M. Gaasenbeek," J. P. Mesirov,’ H. Coller,” M. L. Loh,2
J. R. Downing, M. A. Caligiuri,* C. D. Bloomfield,*

E. S. Lander™*

%this is where we will end today, using a random forest (n =38, p = 3051)
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Random forests as a classical machine learning method

1. Let's try to understand what goes on inside the forest
> Recap on basic machine learning techniques

Why did you predict
42 for this data point?

2. Applying random forests

. X ﬁ (;awkward silence®
> Hyperparameter selectlon/tunlng """" h

3. Interpretability of random forests'®

> Variable importance
» Partial Dependence Plots (PDPs)

19(and machine learning in general)
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From trees to forests
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From trees to forests

What is a forest!! ...

Y Y LY

A random forest combines the information from a collection of
weak learners = randomized decision trees

1. Each tree is built on a bootstrap sample of the data

2. Only a small number of randomly selected predictor variables
are used to find the best split of each node

The forest predictions are averages over the individual trees

"Leo Breiman (2001). "Random Forests". Machine Learning 45 (1), 5-32,
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling
2. Nearest neighbor smoothing

3. Ensemble learning
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling

2.
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Trees are built on bootstrapped subsamples of the data

The purpose of bootstrapping is to create new pseudo samples,
each of which will be used to fit a tree

full data

random
draw

random
draw

bootstrap sample bootstrap sample

bootstrap sample
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Trees are built on bootstrapped subsamples of the data

Each time we draw a random bootstrap sample:

random

A

inbag : subjects in the bootstrap sample

oob : subjects not in the bootstrap sample
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Bootstrapping

There are n = 149 subjects in the Epo data

n <- nrow(Epo)

Let's get a bootstrap sample (of same size) of these subjects
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Bootstrapping

Everything depends on the seed:

set.seed(5)

We draw a bootstrap sample of size n:

bootstrap.sample <- sample(l:n, n, replace=TRUE)

Who is included in the bootstrap sample (look at first six)?

head(table(bootstrap.sample))

bootstrap.sample
234568
113113
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Bootstrapping

Is subject i/ =15 in this bootstrap sample?

15 %inJ, bootstrap.sample

[1] TRUE

Is subject i = 15 inbag or oob (out-of-bag)?
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Bootstrapping

Each time a patient is left oob, we can compare the prediction for
this patient with the outcome that was observed for sample patient

» model validation (which we get back to)

» variable importance measures (which we get back to)
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling
2. Nearest neighbor smoothing

3. Ensemble learning

50/135



Classical machine learning techniques utilized inside the forest

2. Nearest neighbor smoothing

3.
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A tree is a nearest neighbor method

Say we only have access to two predictors of the Epo dataset:

age HbBase
1 70 10.7
2 68 12.7
3 70 13.4
4 55 12.0
5 69 11.2
6 59 13.5

We want to estimate the probability:

P(Y =1 age, HbBase)
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A tree is a nearest neighbor method

In the following, | have cheated

| have simulated data to imitate the Epo data

So | know the true P(Y =1 | age, HbBase)
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A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

Data—generating distribution and observations

40 60 80
age

o] 0.00
o 025
o] 050
o] 075
B oo
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A tree is a nearest neighbor method

Grow a tree to fit P(Y =1 age, HbBase)
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A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

1 tree: estimated probability (nodedepth=1)

40 60 80
age

[=] 0.00
[o 025
[o] 050
5 ors
B woo
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A tree is a nearest neighbor method

1 tree: estimated probability (nodedepth=2)

15.0
[=] 0.00
(]
§ 125 [o 025
2 [o] 050
5] o075
1.00
10.0 o
751
40 60 80
age
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A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

1 tree: estimated probability (nodedepth=3)

40 60 80
age

[=] 0.00
[o 025
[o] 050
5 ors
B woo
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A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

1 tree: estimated probability (nodedepth=4)

40 60 80
age

[=] 0.00
[o 025
[o] 050
5 ors
B woo
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A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

1 tree: estimated probability (nodedepth=5)

40 60 80
age

[=] 0.00
[o 025
[o] 050
5 ors
B woo

54 /135



A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

1 tree: estimated probability (nodedepth=6)

40 60 80
age

[=] 0.00
[o 025
[o] 050
5 ors
B woo
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A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

1 tree: estimated probability (hodedepth=10)

40 60 80
age

[=] 0.00
[o 025
[o] 050
5 ors
B woo
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A tree is a nearest neighbor method

15.0+

HbBase

10.0+

7.5+

1 tree: estimated probability (hodedepth=20)

40 60 80
age

[=] 0.00
[o 025
[o] 050
5 ors
B woo
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Classical machine learning techniques utilized inside the forest

1. Bootstrap sampling
2. Nearest neighbor smoothing

3. Ensemble learning
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Classical machine learning techniques utilized inside the forest

2.

3. Ensemble learning
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A forest is a weighted nearest neighbor method

A forest takes the nearest neighbors from each tree (new tree, new
seed, new bootstrap sample) to define "weighted nearest
neighbors"
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A forest is a weighted nearest neighbor method

1 tree: estimated probability
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method
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A forest is a weighted nearest neighbor method

Now, combine trees to fit P(Y =1 | age, HbBase)
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A forest is a weighted nearest neighbor method

1 tree: estimated probability
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A forest is a weighted nearest neighbor method

2 trees: estimated probability
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A forest is a weighted nearest neighbor method

3 trees: estimated probability
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A forest is a weighted nearest neighbor method

4 trees: estimated probability
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A forest is a weighted nearest neighbor method

5 trees: estimated probability
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A forest is a weighted nearest neighbor method

10 trees: estimated probability
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A forest is a weighted nearest neighbor method

20 trees: estimated probability
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A forest is a weighted nearest neighbor method

50 trees: estimated probability
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A forest is a weighted nearest neighbor method

100 trees: estimated probability
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A forest is a weighted nearest neighbor method

500 trees: estimated probability
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Random trees and forests in R

Load the package:

library("randomForestSRC")

We will start by using the software to grow single trees

treel <-
rfsrc(Y~aget+sext+HbBase+Treat+Resection,
Epo, # data

ntree=1, # only 1 tree!
seed=1) # the result depends on seed
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Random trees and forests in R

Prediction and the oob prediction, e.g., for individual i = 89:

treel$predicted[89]

(11 0.7777778

treel$predicted.oob[89]

[1] NA

. individual 7 = 89 was inbag
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Exercise: From trees to forests

In this exercise, we will use the rfsrc() function from the
randomForestSRC package to grow single trees

» The point is to assess stability of tree and forest predictions

The exercise is described in random-forest-exercises.pdf

» Exercise 1: From trees to forests
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Exercise: From trees to forests (result plot)

M <- 1000
pred <- rep(0, M)

for (ii in 1:M) {
treel <- rfsrc(Y~age+sex+HbBase+Treat+Resection,
Epo, ntree=1, seed=ii)
pred[ii] <- treel$predicted.oob[25]

pred.mean <- sapply(1:M, function(ii) {
mean(na.omit (pred[1:1i]))

b
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Exercise: From trees to forests (result plot)

plot(pred.mean)
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Exercise: From trees to forests (remark)

Here we produced the forest prediction ourselves across an
increasing number of trees

In real life we use the implementation in R to do this automatically.
Here we use 1000 trees by specifying the argument ntree=1000:

rfl <- rfsrc(Y~age+sex+HbBase+Treat+Resection,
Epo, ntree=1000, seed=5)

This gives us directly the forest prediction:

rfi$predicted.oob[25]

[1] 0.7528273
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From trees to forests

Data—generating distribution and observations 1 tree: estimated probability
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From trees to forests

Data—generating distribution and observations 2 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 3 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 4 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 5 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 10 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 20 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 50 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 100 trees: estimated probability
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From trees to forests

Data—generating distribution and observations 500 trees: estimated probability
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Prediction accuracy

Measuring and comparing performances of machine
learning models
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Qutline of today's remaining topics

Part 3:  Tuning random forests (Mark Bech Knudsen)

Part 4:  Variable importance and (Helene Rytgaard)
interpretable machine
learning tools
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Predictive accuracy

Combined test at 12-week pregnancy scan

» accurate prediction is important to avoid recommending
unneeded invasive subsequent diagnostic test

Early detection of diabetic retinopathy

» accurate prediction is important to discover as many patients
as possible in time for effective treatment

Prediction of long-term survival after esophagectomy

» accurate prediction is important to correctly identify and
attend to as many high-risk patients as possible
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Predictive accuracy

Patient no. Treatment successful Predicted probability

1 0 Py
2 0 P,
3 1 Ps
4 1 P,
5 0 Ps
6 1 Ps
7 1 P,
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Prediction error and predictive accuracy

Prediction error is measured in terms of some distance!? between:

1) the observed outcome: Y;

2) and the predicted probability: ~ P; = P(Y; = 1| age;, HbBase;, ...

One example of a loss function is the squared error loss:

LY, B) = (Y- P)?

2Measured in terms of a loss function
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Prediction error and predictive accuracy

Machine learning 101

To estimate the prediction error correctly, we cannot train the
model and assess the model on the same data

70/135



Prediction error and predictive accuracy

Overfitting happens when a model learns the detail and noise in the
data too well so that it negatively impacts the performance of the
model on new data

* data
0.3
* new data

0.2

0.1

0.0

-0.1

0.00 0.25 050 0.75 1.00

Evaluating a model on the same data results in overfitting.
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Prediction error and predictive accuracy

To do it correctly, we can use sample splitting:

Training
Set

v Validation
Y Set

1. | create and fit my model on the training data: Ptrain

2. | check the quality of my model on the validation data
> Average of Z(Y;, ﬁfrai") in validation sample
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Prediction error and predictive accuracy

Let's compare the predictions from 1 tree to those
from a forest of 100 trees

Fix seed:

set.seed(5)

Take 10 % of original data to be our validation set:

val.set <- sample(l:n, n/10, replace=FALSE)

The rest comprise our training data:

train.set <- (1:n)[!(1:n) %in’% val.set]
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Prediction error and predictive accuracy

Fit 1 tree on the training data:

treel.train <-
rfsrc(Y~aget+sex+HbBase+Treat+Resection,
Epo[train.set,],
ntree=1, seed=1)

Fit a forest of 100 trees on the training data:

forest.train <-
rfsrc(Y~age+sex+HbBase+Treat+Resection,
Epol[train.set,],
ntree=100, seed=1)
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Prediction error and predictive accuracy

Predict from the tree model on the validation set:

treel.val <- predict(treel.train,
newdata=Epo[val.set,],
type="response")$predicted

Predict from the forest model on the validation set:

forest.val <- predict(forest.train,
newdata=Epo[val.set,],
type="response")$predicted
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Prediction error and predictive accuracy

We define the loss function:

loss.fun <- function(Y, Phat) mean((Y-Phat)“~2)

Now we can compare performance:

print (rbind(
"1 tree " = loss.fun(Epo[val.set, ]$Y, treel.val),
"forest " = loss.fun(Epol[val.set, ]$Y, forest.val))
)
[,1]

1 tree 0.1443149
forest 0.0726101

Which one seems to perform best?
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Prediction error and predictive accuracy

In practice, the splitting of data is not done once

Training
Set

v Validation
Y Set
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Prediction error and predictive accuracy

In practice, the splitting of data is not done once

v

Fold 1

but several times. This is called V-fold cross-validation

Training
Set

Validation

i 5

Set

%

v

v

%

Fold 1 Fold 2 Fold 3

Fold V
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Prediction error and predictive accuracy

The same technique is used inside the forest!

» The oob prediction for

patient / only uses the trees rangom
built on bootstrap samples

) ) bootstrap [OOB
where patient / was left oob P

&

:

. » The oob prediction error is

Training .
Set estimated by:
1Z o
oob
1 &fMOToob = — EZ(Y;, P?°P)

v | ! Vvalidation i=1

Set
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Prediction error and predictive accuracy

Epo, ntree=100, seed=1)

rfsrc(Y~agetsex+HbBase+Treat+Resection,

Sample size:

Number of trees:

Forest terminal node size:
Average no. of terminal nodes:
No. of variables tried at each split:
Total no. of variables:
Resampling used to grow trees:
Resample size used to grow trees:
Analysis:

Family:

Splitting rule:

Number of random split points:

% variance explained:

Error rate:

149
100

5
12.85
2

5
swor
94
RF-R
regr
mse *randomx
10
58.37
0.1
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Picking the random forest model

Hyperparameter tuning

80/135



Picking the random forest model

The random forest algorithm automatically detects nonlinear

effects, complex interactions, ...
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Picking the random forest model

But the algorithm involves some choices: hyperparameters!

» These can be tuned and lead to different results

» These can be tuned to optimize predictive performance
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Hyperparameters of the random forest

ntree the number of trees

mtry only mtry randomly selected predictor variables are
used to find the best split ("split-variable
randomization")

nodesize is connected to the depth of each tree; it specifies the
minimum number of observations that must be
remain to perform a split

Placebo Epo

Resection HoBase
<0043 p<0.00L
{No, Incompi) Compl s113 >113
s}
HoBase Resection
=0.30g p= 0541

incompl, Compi) No
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Applying a random forest

library("randomForestSRC")

rfsrc(formula,

dataset,

seed =5,

ntree = 1000, # how many trees

mtry = 3, # number of randomly selected
# variables as candidates for
# splitting a node

nodesize = 5) # how many unique data points
# in each terminal node
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Applying a random forest

We fit a random forest model on the Epo data with 1000 trees,
mtry=3 and nodesize=3:

rfl <- rfsrc(Y~age+sex+HbBase+Treat+Resection,

Epo,

seed = 5,
nodesize = 3,
mtry = 3,

ntree = 1000)
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Applying a random forest

Look at predictions (here first 5):

rfi$predicted.oob[1:5]

[1] 0.029569892 0.042219020 0.971616712 0.984539768 0.00493;

The oob prediction for patient 25:

rfi$predicted.oob[25]

[1] 0.7713155

Compare to what was observed for this patient:

Epo[25, "Y"]

(11 1
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Predictions on new data

newpatient

age sex HbBase Treat Resection Receptor
1 48 male 10.8 Epo No negative
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Predictions on new data

Make predictions for this patient:

rf.pred.new <- predict(rfl, newdata=newpatient)

rf.pred.new$predicted

[1] 0.5763333
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Exercise: Get predictions for newpatient

In this exercise, we will use the rfsrc() function from the
randomForestSRC package to get forest prediction for newpatient
for different values of hyperparameters

» The point is to see how sensitive the forest predictions are to
the choice of hyperparameters

The exercise is described in random-forest-exercises.pdf

» Exercise 2: Get predictions for newpatient
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Exercise: Get predictions for newpatient
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Exercise: Get predictions for newpatient
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Tuning hyperparameters

Let's tune the random forest = pick hyperparameters that optimize
predictive accuracy
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Tuning hyperparameters

Let's tune the random forest = pick hyperparameters that optimize

predictive accuracy

Look at the estimated error rate across the different choices of
hyperparameters in the exercise:

[,1]
forest (ntree=50) 0.1229789
forest (ntree=100) 0.1225639
forest (ntree=1000) 0.1182131
forest (nodesize=3) 0.1097429
forest (nodesize=5) 0.1055143
forest (mtry=1) 0.1247416
forest (mtry=6) 0.1218394

Which one is the best one?
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Should we tune the number of trees?

Consider the oob predicted errors for a number of different forests:

1 tree:

5 trees:

10 trees:
50 trees:
100 trees:
150 trees:
200 trees:
500 trees:

1000 trees:

O O O O O O O o o

.2199
.1513
.1366
.1031
.1074
.1055
.1031
.1025
.1038
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Should we tune the number of trees?

Consider the oob predicted errors for a number of different forests:

1 tree: 0.2199
5 trees: 0.1513
10 trees: 0.1366
50 trees: 0.1031
100 trees: 0.1074
150 trees: 0.1055
200 trees: 0.1031
500 trees: 0.1025
1000 trees: 0.1038

Error is minimized at ntree = 500. Better to use less trees?
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Should we tune the number of trees?

One can show!? that increasing ntree always decreases the
theoretical predictive error when using common loss functions (e.g.
squared error).

Advice: do not tune ntree, just choose it "large enough” such that
the accuracy has stabilized, but not so large that it becomes a
computational issue.

3Philipp Probst and Anne-Laure Boulesteix. To Tune or Not to Tune the
Number of Trees in Random Forest. Journal of Machine Learning Research.
18(181):1-18, 2018
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Tuning hyperparameters

Tuning a model is tedious work ... there are lot of possible
combinations of the parameters
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Tuning hyperparameters

Having chosen a value for ntree, propose (relevant) combinations
of values for mtry and nodesize

hyper.grid <- expand.grid(
mtry = floor((ncol(Epo) - 1) / c(4, 3, 2, 1)),
nodesize = c(1, 3, 5, 10, 20, 30),
ntree = 1000,
oob.error = NA
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Tuning hyperparameters
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Tuning hyperparameters

Compute the oob error for all combinations:

for (j in 1:nrow(hyper.grid)) {
tmp.forest <-
rfsrc(Y~age+sex+HbBase+Treat+Resection,
Epo,
mtry=hyper.grid[j, "mtry"],
nodesize=hyper.grid[j, "nodesize"],
ntree=hyper.grid[j, "ntree"], seed=1)
hyper.grid[j, "oob.error"] <-
loss.fun(Epo$Y, tmp.forest$predicted.oob)
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Tuning hyperparameters
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Tuning hyperparameters

Which combination gave the lowest estimated error rate?

hyper.grid[which.min(hyper.grid$oob.error),]

mtry nodesize ntree oob.error
20 6 20 1000 0.1025708
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Tuning hyperparameters

Let's fit the corresponding, now tuned, forest:

j <- which.min(hyper.grid$oob.error)

[1] 20

tuned.rf <-
rfsrc(Y~age+sex+HbBase+Treat+Resection,
Epo,
mtry=hyper.grid[j, "mtry"],
nodesize=hyper.grid[j, "nodesize"],
ntree=hyper.grid[j, "ntree"], seed=1)
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Tuning hyperparameters for the simulated data

Data—generating distribution and observations 500 trees: estimated probability
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Tuning hyperparameters for the simulated data
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Data—generating distribution and observations
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Interpretable machine learning

Variable importance
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Qutline of today's remaining topics

Part 4:  Variable importance and (Helene Rytgaard)
interpretable machine
learning tools
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Logistic regression

Response: treatment successful yes/no

Covariate OddsRatio  Cl1.95 pValue
(Intercept) 0.00 0.0040
age 0.97 [0.91; 1.03] 0.2807
sexmale 0.21 [0.038; 1.10] 0.0657
HbBase 3.26 [1.99; 5.91] <0.0001
TreatPlacebo 0.01 [0.0020; 0.042] <0.0001
Resectionlncompl  0.42 [0.083; 1.96] 0.2801
ResectionNo 0.24 [0.058; 0.89] 0.0395
Receptorpositive ~ 5.81 [1.72; 23.39] 0.0076
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Machine learning

The Algorithmic Modeling Culture

The analysis in this culture considers the inside of
the box complex and unknown. Their approach is to
find a function f(x)—an algorithm that operates on
x to predict the responses y. Their black box looks
like this:

Y"

decision trees
neural nets

Model validation. Measured by predictive accuracy.
Estimated culture population. 2% of statisticians,
many in other fields.
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Interpretable machine learning

» Decision trees produce results that are easy to interpret

» Random forest results, on the other hand, are not per se so
easy to interpret

Why did you predict
42 for this data point?

» What predictor variables were important for the prediction?

» What effect did the predictor variables have on the prediction?
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Variable importance

How important was a given variable for building the forest model?

We consider two different approaches

1. "VIMP"
2. Minimal depth
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Variable importance

VIMP (Variable IMPortance) is measured by the difference
prediction error between:

» running the forest with a "noised-up” version of X

» running the forest with X as was observed

If prediction performance decreases more for variable Xi than for
variable X3, then importance(Xi) > importance(Xz)
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Variable importance

Recall:

> Trees are built by recursive partitioning

» They let the data decide which variables are important for
splitting node

Treat
p <0.001

Placebo Epo

Resection HbBase
p = 0.043, p <0.001

<113 >11.3

(9]
Resection
p=0.641

{Incompl, Compl} No

<121 >121 ch;;t;;
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positive negative
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Variable importance

The minimal depth is the average distance from the root node to
the first split on a specific variable

ANrA

age

The smaller the minimal depth, the more important is the variable
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Variable importance
VIMP for the Epo data:

tuned.rf <- rfsrc(Y~age+sex+HbBaset+Treat+
Resection,

Epo,
mtry=hyper.grid[j, "mtry"],
nodesize=hyper.grid[j, "nodesize"],
ntree=hyper.grid[j, "ntree"],
seed=1,
importance=TRUE) # compute vimp

tuned.rf$importance

age sex HbBase Treat Resection
0.07420322 0.00589100 0.23239730 0.36622336 0.02681411

What variables are most important?
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Variable importance

plot(tuned.rf)
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Variable importance

Minimal depth for the Epo data:

age sex HbBase Treat Resection
1.550 3.688 1.300 0.992 2.072

The forest provides a threshold (cut-off) value:

[1] 2.343143

What variables are important?
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Variable importance

What you should not do. ..

rfsrc(Y~age+sex+HbBase+Treat+Resectiont+Receptor,

e,
mtry = 1, # <-- nooo

)

115 /135



Variable importance

What you should not do. ..

rfsrc(Y~aget+sex+HbBase+Treat+Resection+Receptor,

H

mtry = 1, # <-- nooo

)
mtry=1: ntryl
age 1.688
sex 2.017
HbBase 1.697
Treat 1.867

Resection 1.903
Threshold=

[1] 2.051348
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Variable importance

What you should not do. ..

H

mtry = 1, # <-- nooo

rfsrc(Y~aget+sex+HbBase+Treat+Resection+Receptor,

)
mtry=1: ntryl mtry=2: ntry2
age 1.688 age 1.550
sex 2.017 sex 3.688
HbBase 1.697 HbBase 1.300
Treat 1.867 Treat 0.992

Resection 1.903
Threshold=

[1] 2.051348

Resection 2.072
Threshold=

[1] 2.343143
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Variable importance measures from random forests
Why is this?

mtry controls split-variable randomization:

» for each node only a small number of randomly selected
predictors are used to find the best split of that node (= mtry)

> this is done as part of the randomization of trees

» (it ensures some of the theoretical properties of the forests)

In fact, if we are interested in variable importance (rather than
predictive accuracy) we should choose a high value for this.

116 /135



Variable importance on simulated data

» Two uncorrelated variables x1 and x2 with the same effect

v

One variable c1 correlated with x1 but with no effect

v

Two correlated variables z1 and z2 with the same effect

» Ten noise variables wi1,..., w10

x1 <- runif(n)

x2 <- runif(n)

z1 <- rnorm(n, mean=0, sd=0.3)

z2 <- rnorm(n, mean=z1+0.1, sd=0.3)

cl <- rnorm(n, mean=x1+0.1, sd=0.3)

w <- matrix(runif(n*10), ncol=10)

y <- rnorm(n, mean=0.1+2.5%x1+2.5%xx2+2.5%z1+2.5%z2)

117 /135



Variable importance on simulated data

rf.sim <- rfsrc(y~x1+x2+cl+zl+z2+
wl+w2+w3+wd+wb+wb+w7+w8+w9+wl0,
sim.data,
seed=3, ntree=1000,
importance=TRUE)

118/135



Variable importance on simulated data

v

v

v

Two uncorrelated variables x1 and x2 with the same effect
One variable c1 correlated with x1 but with no effect
Two correlated variables z1 and z2 with the same effect

Ten noise variables wi,..., w10
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Exercise: ldentifying risk factors with variable importance

In this exercise we will look at the analysis of Hsich et al. (2011):

Identifying Important Risk Factors for Survival in Patient
With Systolic Heart Failure Using Random Survival Forests

Eileen Hsich, MD; Eiran Z. Gorodeski, MD, MPH; Eugene H. Blackstone, MD;
Hemant Ishwaran, PhD; Michael S. Lauer, MD

Background—Heart failure survival models typically are constructed using Cox proportional hazards regres
Regression modeling suffers from a number of limitations, including bias introduced by commonly used variable
selection methods. We illustrate the value of an intuitive, robust approach to v.mqhk wlutmn. random survival forests
(RSF), in a large clinical cohort. RSF are a p i powerful i of classifica and ion trees, with
lower variance and b

Methods and Results—We studied 2231 adult patients with systolic heart failure who underwent cardiopulmonary stress
testing. During a mean follow-up of 5 years, 742 patients died. Thirty-nine demographic, cardiac and noncardiac
comorbidity, and stress testing variables were analyzed as potential predictors of all-cause mortality. An RSF of 2000
trees was constructed, with each tree constructed on a bootstrap sample from the original cohort. The most predictive

ariables were defined as those near the tree trunks (averaged over the forest). The RSF identified peak oxygen
consumption, serum urea nitrogen, and treadmill exercise time as the 3 most important predictors of survival. The RSF
predicted survival similarly to a conventional Cox proportional hazards model (out-of-bag C-index of 0.705 for RSF
versus 0.698 for Cox proportional hazards model).

Conclusions—An RSF model in a cohort of patients with heart failure performed as well as a traditional Cox proportional
hazard model and may se; a more intuitive approach for clinicians to identify important risk factors for all-cause
mortality. (Circ Cardiovasc Qual Outcomes. 2011;4:39-45.)

Key Words: heart failure m prognosis m statistics m survival analyses

The exercise is described in random-forest-exercises.pdf

» Exercise 3: ldentifying risk factors
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Effects of predictor variables on the final prediction

Plots can be useful to assess the effect of predictor variables on the
final prediction.
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Effects of predictor variables on the final prediction

Plots can be useful to assess the effect of predictor variables on the
final prediction. There are different ways to do so:

Partial Dependence Plots (PDPs)

» Average forest predictions as a function of predictor variables

» Obtained by marginalizing the forest prediction over the other
features/covariates

» Can show if the relationship is linear, monotonic or more
complex

Individual Conditional Expectation (ICE) plots
» Looking at the individual predictions as a function of predictor

variables
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Partial Dependence Plots (PDPs)

Say, we want to know how
FA’(Y =1 age, Gender, HbBase, Treatment, Resection)

varies when HbBase varies

We can estimate this by:

PHbBase

:Ii—‘

Z = 1| age;, Gender;, HbBase = b,

Treatment;, Resection;)

» We marginalize the forest prediction over the other
features/covariates
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Partial Dependence Plots (PDPs)

In R, we can plot these estimates for all variables by simply writing:

plot.variable(tuned.rf, partial=TRUE, plots.per.page=3)
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Partial Dependence Plots
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Partial Dependence Plots (PDPs)

Predicted probability

It is clear that the random forest captures a highly nonlinear effect
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Logistic regression

Random forest
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Individual Conditional Expectation (ICE) plots

The ICE plot shows the variation of

IsiHbBase(b) = /S(Y =1 | age;, Gender,-, HbBase = b,

Treatment;, Resection;)

for each individual i one by one.

» This can very useful if there are interactions

> Do the curves follow the same course (e.g., changepoints,
linearity, etc) for all individuals?

» OBS: Intercept differences are not a sign of interactions
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Individual Conditional Expectation (ICE) plots

ICE plot for HbBase
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Individual Conditional Expectation (ICE) plots

ICE plot for HbBase, colored by Treat
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Individual Conditional Expectation (ICE) plots

PDP plot for HbBase, computed in groups defined by Treat
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Individual Conditional Expectation (ICE) plots

ICE plot for age
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Individual Conditional Expectation (ICE) plots

ICE plot for age, colored by Treat
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Interpretable machine learning

Variable importance measures can tell us what variables seem
important for prediction

» Beware of correlated predictors

PDPs and ICE plots can show us how predicted probabilities vary
as a function of predictor values

» PDPs show the average variation
> Beware of hidden interactions

» |CE show the individual variations
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Logistic regression versus
random forests

Why did you predict
42 for this data point?

e
Without Machine Learning With Machine Learning — —
. S

* VERY SPECIFIC
INSTRUCTIONS
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Logistic regression versus random forests

When utilizing a logistic regression approach:

» We must specify the model'*
IS(Y = 1| age, Gender, HbBase, Treatment, Resection, Epo)

= expit(Bo + B1age + [Boage : female + -++) (*)

Based on the model we may:
» Predict P(Y =1) for a new patient

» Interpret odds ratios, conditional on holding the other features
fixed (p-values, confidence intervals, etc)

But all inference relies on (*) being correct and prespecified

“|nteractions, quadratic terms (e.g., age?), ...
131/135



Logistic regression versus random forests

When utilizing a random forest approach:
» The forest automatically detects nonlinear effects and complex
interactions

» "Model selection" is comprised by hyperparameter tuning

Based on the model we may:
> Predict /S(Y =1) for a new patient often with high accuracy

» Obtaining interpretable measures from the random forest®® is
applied after model training, e.g.:

> Variable importance, PDPs, ICEs, ...

But, inference (confidence intervals, p-values) is not so obvious
And, beware that everything depends on the random seed

5 And other machine learning methods
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Exercise: Predicting tumor class (Golub et al., 1999)

Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene
Expression Monitoring

T. R. Golub,2* D. K. Slonim,"} P. Tamayo," C. Huard,’
M. Gaasenbeek,” J. P. Mesirov," H. Coller,” M. L. Loh,?
J. R. Downing,® M. A. Caligiuri,* C. D. Bloomfield,*

E. S. Lander’5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure i i the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

» Accurate cancer classification can be used to target specific
therapies to distinct tumor types

» We could use a random forest model to provide a data-based
classification algorithm based on gene expression monitoring
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Exercise: Predicting tumor class (Golub et al., 1999)

In this practical we will work with a dataset containing information
on 38 tumor mRNA samples from 38 individuals and the gene
expression values from 3051 genes

We will go through the steps on the lectures slides to explore these
data

» The goal of the analysis is to predict the tumor class

The exercise is described in random-forest-exercises.pdf

» Exercise 4: Predicting tumor class
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That was it ...

Comments and suggestions for this material are very much welcome
at hely@sund.ku.dk ®
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