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Data sizes. The  problemN ≪ P
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The "Big Data" revolution

1. "Big  small " problem with many modern large-scale-datasets:

registers, images, *-omics, ...

2. Need to reduce the dimension in some way

3. How do we evaluate significance when we have used the data for

feature selection?

4. Multiple testing becomes an issue --- not just for high-dimensional

data

P N
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Manhattan plot
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Multiple comparison problems

Errors committed when testing a single null hypotheses, 

Analysis result H0 true H0 false

Reject α 1-β

Don't reject 1-α β

 is the significance level

 is the power

H0

α

1 − β
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Multiple comparison problems

The family-wise error rate (FWER) is the probability of making at least

one type I error (false positive).

For  tests we have

where the third equality only holds under independence, but the

inequality holds due to Boole’s inequality.

m

FWER = P(∪(pi ≤ α))) = 1 − P(no false positives) = 1 − (1 − α)m ≤ mα
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Multiple comparison problems

Number of errors committed when testing  null hypotheses.

Analysis result H_0 true H_0 false Total

Reject V S R

Don't reject U T m-R

Total m

Here , the number of rejected hypotheses/discoveries. , ,  and 

are unobserved. The FWER is

m

m0 m − m0

R V S U T

FWER = P(V > 0) = 1 − P(V = 0)
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Bonferroni correction

The most conservative method but is free of dependence and

distributional assumptions.

So set the significance level for each individual test at .

In other words we reject the th hypothesis if

FWER = 1 − P(V = 0) = 1 − (1 − α)m ≤ mα

α/m

i

mpi ≤ α ⇔ pi ≤
α

m
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Sidak correction

Slightly less conservative than Bonferroni (but not much). Requires

independence!

1 − (1 − α)m = α∗ ⇔ α = 1 − m√1 − α∗
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Holm correction

1. Compute and order the individual p-values: .

2. Find 

3. If  exists then reject hypotheses corresponding to

p(1) ≤ p(2) ≤ ⋯ ≤ p(m)

k̂ = min{k : p(k) > }α
m+1−k

k̂

p(1) ≤ p(2) ≤ ⋯ ≤ p(k̂−1)
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Holm correction

Controls the FWER: Assume the (ordered)  is the first wrongly rejected

true hypothesis. Then .

Hypothesis  was rejected so

Since there are  true hypotheses then (Bonferroni argument) the

probability that one of them is significant is at most  so FWER is

controlled.

k

k ≤ m − (m0 − 1)

k

p(k) ≤ ≤ ≤
α

m + 1 − k

α

m + 1 − (m − (m0 − 1))
α

m0

m0

α
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Practical problems

While guarantee of FWER-control is appealing, the resulting

thresholds often suffer from low power.

In practice, this tends to wipe out evidence of the most interesting

effects

FDR control offers a way to increase power while maintaining some

principled bound on error
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False discovery rate

Number of errors committed when testing  null hypotheses.

Analysis result H_0 true H_0 false Total

Reject V S R

Don't reject U T m-R

Total $m-m_0$ m

Proportion of false discoveries is . [Set to  for ]

The false discovery rate is 

m

m0

Q = V
R

0 R = 0

FDR = E(Q) = E( )V
R
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Estimating FDREstimating FDR
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Estimating FDREstimating FDR
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Estimating FDREstimating FDR
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Estimating FDR — BH step-up

Benjamini-Hochberg step-up procedure to control the FDR at .

1. Compute and order the individual p-values: .

2. Find 

3. If  exists then reject hypotheses corresponding to

α

p(1) ≤ p(2) ≤ ⋯ ≤ p(m)

k̂ = max{k : ⋅ p(k) ≤ α}m
k

k̂

p(1) ≤ p(2) ≤ ⋯ ≤ p(k̂)
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Estimating FDR — BH step-up

-values

Note that each  is smaller or equal to the criterium in Holm's method

so controls the FWER.

p

~p(1) = min{~p(2),mp(1)}

⋮ ⋮
~p(m−1) = min{~p(m), p(m−1)}
~p(m) = p(m)

m
m−1

pi
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Estimating FDR — BH step-up

If iid of the  tests (and all tests independent) and ordered so the 

true tests comes first. Control FDR at level :

m0 m0

q

E(V /R) =
m

∑
r=1

E[ 1R=r] =
m

∑
r=1

E[V 1R=r]

=
m

∑
r=1

E[
m0

∑
i=1

1pi≤ 1R=r] =
m

∑
r=1

[1p1≤ 1R=r] = ⋯

=
m

∑
r=1

[
m0

∑
i=1

1p1≤ 1R=r]

= q ≤ q

V

r

1
r

1
r

qr

m

m0

r
qr

m

m0

r
qr

m

m0

m 19



 values

The -value is defined to be the FDR analogue of the -value.

The -value of an individual hypothesis test is the minimum FDR at

which the test may be called significant.

q

q p

q value(pi) = min
t≥pi

F̂DR(t)

q

20



 values

When all  null hypotheses are true then FDR control is equivalent to

FWER control.

FDR approach generally gives more power than FWER control and

fewer Type I errors than uncorrected testing.

The FDR bound holds for certain classes of dependent tests. In

practice, it is quite hard to "break"

q

m

21



ExercisesExercises
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Bootstrapping: evaluating complex methods

When we have complex data (or perhaps just big data combined with

simple methods) and non-parametric methods then we still with to

evaluate them.

How stable are the results?
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The bootstrap/jackknife procedures

Whenever we provide an estimate (mean, proportion, ...) we also want to

infer its precision!

We may or may not be able to formulate a full parametric (or semi-

parametric model).

The bootstrap procedure allows us to estimate the standard error even in

complicated situations or for non-standard statistics.
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Statistics 101: populations and sample
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Statistics 101: multiple samples

Different samples will result in different outcomes.

If we had the means to produce several samples we would know the

sampling distribution.
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Sample variation
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Sample variation
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Sample variation
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Sample variation
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Resampling

Have observations  and an estimate

for some estimation algorithm.

Want the SE of .

xi ∼ F

θ̂ = s(x)

θ̂
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The jackknife estimate

Estimate  times - once with each observation removed.

Then the jackknife estimator is

Reduces to the standard error if  is a sample average.

θ̂ N

θ̂ (−i) = s(x(−i))

SE(θ̂) =
⎷

N

∑
i=1

(θ̂ (−i) − ^̄θ (−))
2N − 1

N

θ̂
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The jackknife estimate

Non-parametric, no assumptions on , samples of size 

In general: the jackknife standard error is upwardly biased.

Only to be used with smooth, differentiable statistic

x <-c(8.26, 6.33, 10.4, 5.27, 5.35, 5.61, 6.12, 6.19, 5.2,

7.01, 8.74, 7.78, 7.02, 6, 6.5, 5.8, 5.12, 7.41, 6.52, 6.21,

12.28, 5.6, 5.38, 6.6, 8.74)

CV <- function(x) sqrt(var(x))/mean(x)

CV(x)

[1] 0.2524712

library("bootstrap") ; res <- jackknife(x, CV)

F N − 1
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The jackknife estimate

res

$jack.se

[1] 0.05389943

$jack.bias

[1] -0.009266436

$jack.values

 [1] 0.2563873 0.2565586 0.2384298 0.2507329 0.2513200

 [6] 0.2530603 0.2557374 0.2560293 0.2501992 0.2580969

[11] 0.2541045 0.2577524 0.2581067 0.2551946 0.2571038

[16] 0.2541711 0.2495662 0.2581975 0.2571609 0.2561093

[21] 0.2020978 0.2529980 0.2515338 0.2573745 0.2541045

$call

jackknife(x = x, theta = CV)
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Estimating bias

When  is unbiased then

But if the procedure has bias

then we can estimate the size of the bias from jackknife results.

θ̂

E(^̄θ) =
N

∑
i=1

E(θ̂ (−i)) = θ
1
N

E(θ̂) = θ + + + rest
a

N

b

N 2
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Estimating bias

Thus,

Furthermore, the bias-corrected jackknife estimate,

is an unbiased estimate of  up to second order.

E(^̄θ − θ̂) = + rest
a

N(N − 1)

biasjack = (N − 1)(^̄θ − θ̂) = .
a

N

θ̂ jack = θ̂ − biasjack
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Improvement on the jackknife

Instead of removing 1 observation at a time, remove . Then there are

 sets

... or use the bootstrap!

d

( )N
d

SE = √ ∑((θ̂ (Z) − ^̄θ (−))
2N − d

d( )N
d
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Nonparametric bootstrap

If we could draw extra samples from the population it would be easy!

Use the sample as the population and generate "fake samples"

Population  Sample  "Fake sample"→ →
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Nonparametric bootstrap

Get a random bootstrap sample from the sample with replacement

Then we can get

Do that  times and get information about the full distribution.

x∗ = (x∗
1,x∗

2, … ,x∗
N

)

θ̂
∗

= s(x∗)

B
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Jackknife vs bootstrap

Jackknife provides stable results (will always get the same result)

whereas bootstrap varies.

Jackknife only estimates the variance of the point estimator whereas

the bootstrap provides information on the distribution.

SE = √∑(θ̂
∗b

− θ̂
∗−

)2

B − 1
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Nonparametric bootstrap in R

results <- bootstrap(x, 200, CV)
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Parametric bootstrap

The nonparametric bootstrap made no assumptions about the

distribution. Use distribution information if known.

Fit model to data

Draw  samples of random numbers from the fitted model

Use those for bootstrap

Useful for small sample sizes (assuming the model holds), difficult

evaluations, ... Sampling from the "wrong" distribution and forgetting

the uncertainty. Retains the information in the explanatory variables but

needs the error distribution.

B

42



Parametric bootstrap - resample residuals

Fit model to data, keep predictions  and compute a vector of

residuals, .

Create new sets of observations  using a random

residual.

Refit the model using the new set of response variables, and compute

the statistic

Do that  times

Retains the information in the explanatory variables. What to resample?

ŷ i
ϵ̂ i = yi − ŷ i

y∗ = ŷ i + ϵ̂ j

B
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Rough R code

x <- c(5, 9, 8, 4, 7, 4, 2)

# Non-parametric bootstrap

x.star <- sample(x, replace = TRUE)

# Parametric bootstrap for assumed Gaussianity

x.star <- rnorm(length(x), mean = mean(x), sd = sd(x))

# Mean approximates the mean for Gaussian distribution for residuals

resids <- x - mean(x)

x.star <- mean(x) + sample(resids, replace=TRUE)
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What to do?

Depends on the situation.

The structure of the data might make some options easier.

Belief about the parametric model would improve efficiency.

Belief about the bias of the estimate would influence the choice.
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Bootstrap confidence intervals

Standard 95% confidence intervals

Could get that directly from the bootstrap results.

mean(results$thetastar) + c(-1.96, 1.96)*sd(results$thetastar)

[1] 0.1497948 0.3262128

Only really works if the distribution is symmetric

θ̂ ± 1.96SE
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Bootstrap percentile confidence intervals

Generate the "full" distribution. Cut off 2.5% at each end. Use an

improvement that depends on the precision of the percentiles.

bcanon(x, 2000, CV)

$confpoints

     alpha bca point

[1,] 0.025 0.3035158

[2,] 0.050 0.3307189

[3,] 0.100 0.3595159

[4,] 0.160 0.3875672

[5,] 0.840 0.6210273

[6,] 0.900 0.6629274

[7,] 0.950 0.7128380

[8,] 0.975 0.7218803

$z0
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Bootstrap percentile confidence intervals

Can also use the  distribution

boott(x, CV)

$confpoints

         0.001      0.01     0.025      0.05       0.1

[1,] 0.2793437 0.3234873 0.3348129 0.3488559 0.3805315

         0.5       0.9      0.95     0.975     0.99

[1,] 0.47362 0.6681084 0.7423936 0.7955465 1.383483

        0.999

[1,] 1.596856

$theta

NULL

$g

NULL

t
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