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The "Big Data" revolution

1. "Big P small N" problem with many modern large-scale-datasets:
registers, images, *-omics, ...
2. Need to reduce the dimension in some way

3. How do we evaluate significance when we have used the data for
feature selection?

4. Multiple testing becomes an issue --- not just for high-dimensional
data
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Multiple comparison problems
Errors committed when testing a single null hypotheses, H

Analysis result Ho true Ho false

Reject o 1-f

| Doritreject | 1o | B

« is the significance level

1 — Bis the power




Multiple comparison problems

The family-wise error rate (FWER) is the probability of making at least
one type I error (false positive).

For m tests we have
FWER = P(U(p; < a))) = 1 — P(no false positives) =1 — (1 — a)™ < ma

where the third equality only holds under independence, but the

inequality holds due to Boole’s inequality.




Multiple comparison problems

Number of errors committed when testing m null hypotheses.

Analysis result H_otrue H_ofalse Total

Re]ect
--
Total

Here R, the number of rejected hypotheses/discoveries. V, .S, U and T’
are unobserved. The FWER is

FWER=P(V >0)=1—-P(V =0)




Bonferroni correction

The most conservative method but is free of dependence and
distributional assumptions.

FWER=1—-PV=0=1—-(1-a)" <ma

So set the significance level for each individual test at a/m.

In other words we reject the i¢th hypothesis if
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Sidak correction

1-(1-a)"=a*"<a=1-{/1-a"

Slightly less conservative than Bonferroni (but not much). Requires

independence!




Holm correction

1. Compute and order the individual p-values: p;;) < pa) < -+ < pim).-

2. Find k = min{k : pz) > pE

3. If k exists then reject hypotheses corresponding to
P@) < P(2) < --- < Py




Holm correction

Controls the FWER: Assume the (ordered) k is the first wrongly rejected
true hypothesis. Then k < m — (mgp — 1).

Hypothesis k was rejected so
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< <
p(k)_m—l—l—k_m—i—l—(m—(mo—l)) m

Since there are mg true hypotheses then (Bonferroni argument) the
probability that one of them is significant is at most o so FWER is

controlled.




Practical problems

e While guarantee of FWER-control is appealing, the resulting
thresholds often suffer from low power.

In practice, this tends to wipe out evidence of the most interesting
effects

e FDR control offers a way to increase power while maintaining some
principled bound on error




False discovery rate

Number of errors committed when testing m null hypotheses.

Analysis result H otrue H_ofalse Total

ect
-_

Total my $m-m_0$ m

Proportion of false discoveries is ) = %. [Set to 0 for R = 0]

The false discovery rateis FDR = E(Q) = FE (%)
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Estimating FDR — BH step-up
Benjamini-Hochberg step-up procedure to control the FDR at .

1. Compute and order the individual p-values: p1) < p) < -+ < pim).-
2. Find k = max{k : 7 - pr) < a}

3. If k exists then reject hypotheses corresponding to
P@) < P(2) Sooo0 & P




Estimating FDR — BH step-up

p-values
P = min{p ), mp(1) }
~(m—1) — mln{ﬁ (m)» %p(m—l)}
Pim) = P(m)

Note that each p; is smaller or equal to the criterium in Holm's method
so controls the FWER.




Estimating FDR — BH step-up

If iid of the my tests (and all tests independent) and ordered so the my

true tests comes first. Control FDR at level g:




g values

The g-value is defined to be the FDR analogue of the p-value.

q value(p;) = min F/DT{(t)
t=>p;

The g-value of an individual hypothesis test is the minimum FDR at
which the test may be called significant.




g values

e When all m null hypotheses are true then FDR control is equivalent to
FWER control.

e FDR approach generally gives more power than FWER control and
fewer Type I errors than uncorrected testing.

e The FDR bound holds for certain classes of dependent tests. In
practice, it is quite hard to "break”




Exercises
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Bootstrapping: evaluating complex methods

When we have complex data (or perhaps just big data combined with

simple methods) and non-parametric methods then we still with to
evaluate them.

How stable are the results?




The bootstrap/jackknife procedures

Whenever we provide an estimate (mean, proportion, ...) we also want to
infer its precision!

We may or may not be able to formulate a full parametric (or semi-
parametric model).

The bootstrap procedure allows us to estimate the standard error even in

complicated situations or for non-standard statistics.







Statistics 101: multiple samples

Different samples will result in different outcomes.

If we had the means to produce several samples we would know the
sampling distribution.




Sample variation
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Sample variation
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Sample variation
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Resampling
Have observations x; ~ F'and an estimate
0 = s(z)

for some estimation algorithm.

Want the SE of 6.




The jackknife estimate
Estimate & N times - once with each observation removed.
0_iy = s(z(_))

Then the jackknife estimator is

Reduces to the standard error if 8 is a sample average.




The jackknife estimate

e Non-parametric, no assumptions on F', samples of size N — 1
e In general: the jackknife standard error is upwardly biased.
e Only to be used with smooth, differentiable statistic

x <-c(8.26, 6.33, 10.4, 5.27, 5.35, 5.61, 6.12, 6.19, 5.2,
7.01, 8.74, 7.78, 7.02, 6, 6.5, 5.8, 5.12, 7.41, 6.52, 6.21,
12.28, 5.6, 5.38, 6.6, 8.74)

CV <- function(x) sqrt(var(x))/mean(x)

CV(x)

[1] 0.2524712

library("bootstrap") ; res <- jackknife(x, CV)




The jackknife estimate

res
Sjack.se
[1] 0.05389943
$jack.bias
[1] -0.009266436
$jack.values
[1] 0.2563873 0
[6] 0.2530603 0
[11] 0.2541045 0
[16] 0.2541711 O
[21] 0.2020978 0
$Scall

jackknife(x =

)

.2565586
.2557374
.2577524
.2495662
.2529980

theta =

(OO MO OMNOC

.2384298
.2560293
.2581067
.2581975
.2515338

CV)

OO OMOMNO)

.2507329
.2501992
.2551946
.2571609
.2573745

(OO MONOMNOC

.2513200
.2580969
.2571038
.2561093
.2541045




Estimating bias

When 6 is unbiased then

But if the procedure has bias

A o} b

then we can estimate the size of the bias from jackknife results.




Estimating bias

Thus,

Furthermore, the bias-corrected jackknife estimate,

Hjack =0 — biaSjack

is an unbiased estimate of 6 up to second order. 36




Improvement on the jackknife

Instead of removing 1 observation at a time, remove d. Then there are
(Z(}[ ) sets

N —d A 2
SE: 92—9_2
\/d(N) Z((() ())

... or use the bootstrap!




Nonparametric bootstrap
If we could draw extra samples from the population it would be easy!

Use the sample as the population and generate "fake samples”

Population — Sample — "Fake sample"




Nonparametric bootstrap

Get a random bootstrap sample from the sample with replacement

i = (@0, g o0 o 85y

Then we can get

Do that B times and get information about the full distribution.




Jackknife vs bootstrap

e Jackknife provides stable results (will always get the same result)
whereas bootstrap varies.

e Jackknife only estimates the variance of the point estimator whereas
the bootstrap provides information on the distribution.
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Nonparametric bootstrap in R

results <- bootstrap(x, 200, CV)




Parametric bootstrap

The nonparametric bootstrap made no assumptions about the
distribution. Use distribution information if known.

e Fit model to data
e Draw B samples of random numbers from the fitted model
e Use those for bootstrap

Useful for small sample sizes (assuming the model holds), difficult
evaluations, ... Sampling from the "wrong" distribution and forgetting
the uncertainty. Retains the information in the explanatory variables but

needs the error distribution.




Parametric bootstrap - resample residuals

e Fit model to data, keep predictions y, and compute a vector of
residuals, €; = y; — y,.

e Create new sets of observations y* = y, + €, using a random
residual.

e Refit the model using the new set of response variables, and compute
the statistic

e Do that Btimes

Retains the information in the explanatory variables. What to resample?




Rough R code

x <- c(5, 9, 8, 4, 7, 4, 2)
Non-parametric bootstrap
x.star <- sample(x, replace = TRUE)

=

# Parametric bootstrap for assumed Gaussianity
x.star <- rnorm(length(x), mean = mean(x), sd = sd(x))

# Mean approximates the mean for Gaussian distribution for residuals
resids <- x - mean(x)
X.star <- mean(x) + sample(resids, replace=TRUE)




What todo?

Depends on the situation.

e The structure of the data might make some options easier.
e Belief about the parametric model would improve efficiency.

e Belief about the bias of the estimate would influence the choice.




Bootstrap confidence intervals

Standard 95% confidence intervals

0+ 1.96SE

Could get that directly from the bootstrap results.

mean(results$thetastar) + c(-1.96, 1.96)*sd(results$Sthetastar)

[1] 0.1497948 0.3262128

Only really works if the distribution is symmetric




Bootstrap percentile confidence intervals

Generate the "full” distribution. Cut off 2.5% at each end. Use an
improvement that depends on the precision of the percentiles.

bcanon(x, 2000, CV)

Sconfpoints
alpha bca point

[1,] 0.025 0.3035158
[2,] 0.050 0.3307189
[3,] 0.100 0.3595159
[4,] 0.160 0.3875672
[5,] 0.840 0.6210273
[6,] 0.900 0.6629274
[7,] 0.950 0.7128380
[8,] 0.975 0.7218803

$z0



Bootstrap percentile confidence intervals

Can also use the t distribution

boott(x, CV)

Sconfpoints
0.001 0.01 0.025 0.05 0.1
[1,] 0.2793437 0.3234873 0.3348129 0.3488559 0.3805315
0.5 0.9 0.95 ©.975 0.99
[1,] 0.47362 0.6681084 0.7423936 0.7955465 1.383483
0.999
[1,] 1.596856

Stheta




