


Missing data can lead to problems

"The occurrence of missing data complicates statistical analysis, because we cannot
perform the analysis originally intended for complete data without having to
handle the missing values first. A divect consequence of this is that inappropriate

handling of missing values can lead to bias and incorrect conclusions.”




The best solution

The best solution to missing data is to not have any.




Missing observations occur because

e Participants drop out of studies

e Participants do not answer specific questions

e Dataislost or corrupted

e Measurements fail

e Data is not recorded

e Datais not available (e.g., expensive measurements)

e Dataiscensored (e.g., detection limits)
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RCT on 693 patients from USA, DK and DE, suffering from alcohol
dependency, all 60+ years old.

Purpose: Compare usual treatment (MET) with new treatment that
contains an additional element (MET+CRA).

Outcome: Controlled consumption (CC) status after approx. 6 months
of treatment (blood alcohol level < 0.05% at all times during 30 days).
Seven baseline covariates: country (DK, DE, USA), sex (male/female),
age (years older than 60), education (no degree/at most
undergrad./grad. or post grad.), cohabiting with partner (yes/no),
alcohol dependence severity (low/intermediate/severe), number of

previous treatments (0/1-2/3+)




Missing information in two variables

e Dependency severity: 3 patients (0.43%) (excluded)

e Controlled consumption status: 164 patients (23.77%)
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Non-response analysis

We fitted a logistic regression model with:

e Outcome: Indicator of whether the patient has missing CC status
e Predictors: All the remaining variables

Change in df AIC LRT p-value

Full model 740.8

Treatment 739.2 (0.3952 0.5296
Gender 738.8 0.0032 0.9551
Country 748.9 12.0718 0.0024
746.6 7.8397 0.0051
741.8 4.9461 0.0843
744.5 5.7452 0.0165
739.1 2.3205 0.3134
744.7 7.8811 0.0194

Age

Education

Partner status

Alcohol dependence severity
Previous treatment history

DO BN = D = N =



In practice

We estimated the difference between the two treatments using logistic
regression.

e The primary model was fitted on complete cases only.
e In sensitivity analyses, we compared this model to
o A model using multiple imputation

o Several best case/worst case scenario models




Table 3.1: Estimated log odds ratios from the model of controlled consumption status using all full covariate adjustment.
The reported estimates are on log odds ratio scale and they are computed relative to the following reference category:
Treament MET; Gender male; Country Denmark; Age 60; Education none; No partner; Low ADS; Previous treatments
0. The mean log odds of having a controlled alcohol consumption in this reference group is represented by the intercept
estimate. The reported p-values correspond to two-sided z-tests of the null-hypothesis of a zero parameter value.

Estimate Std. error z statistic p-value

Intercept
Treatment: MET+CRA

Country: USA
Country: Germany

Gender: Female

Age

Married or cohabiting: Yes
Severity: Intermediate
Severity: Substantial or severe
Education: At most
undergraduate degree
Education: Graduate or
post-graduate

Previous treatments: 1-2
Previous treatments: 3+

-0.3507
0.2028
0.0736
-0.0351
-0.5543
0.0677
0.2270
-0.0777
-0.2767
0.0518

-0.4463

0.2655
0.2938

0.3050
0.1801
0.2327
0.2522
0.1906
0.0211
0.1877
0.2307
0.4096
0.2286

0.2872

0.2187
0.3087

-1.1499
1.1260
0.3164

-0.1392

-2.9085
3.2038
1.2094

-0.3367

-0.6755
0.2268

1.2140
0.9517

0.2502
0.2602
0.7517
0.8893
0.0036
0.0014
0.2265
0.7363
0.4994
0.8206

0.1202

0.2247
0.3413




Hypothetical follow-up study

e Qutcome: Diagnosis of liver disease during 10 years of follow-up (no
censoring, no death).

e Key variable of interest: CC status after 6 months.

e Other variables: Country, gender, age, education, partner status,
alcohol dependency severity, previous treatment history.

e You observe 24% missing in CC status.




24% have missing CC information ...

1.... due to a fire in the storing facility.

2. ... because those patients were embarassed to tell the treatment facility that they had started
drinking again.

3....and they are the 24% of the patients with the most severe alcohol dependencies, and they
dropped out of the study

4. ... and they are the 24% females, and they dropped out of the study.

5. those patients all had last names starting with “A”. Their records were lost because someone
dropped a cup of coffee on that folder.

6. ... because those patients dropped out of the study since they were not drinking and felt safe
that they wouldn't start again.

7. ... and they are the 24% that have red hair. They are missing in CC because a data manager
accidentially deleted their information - and the variable containing hair color.

8. and they all had undiagnosed pre-stages to liver disease during the study and dropped out

due to illness.




Discuss the missing information scenarios

Assume that we carry out a statistical analysis (e.g. logistic reg.) using
only patients with no missing information (complete case analysis).

For each of the eight scenarios, discuss with your neighbors:

e Will this affect the estimate of the effect of CC status on liver disease
risk?

e Will this affect the precision (e.g., width of confidence intervals) of
our effect estimate?

e Can this problem be solved using statistical methods? And do you
have any suggestions for how?

14




Missing informationin R

First rule of missing information handling in R:
Always represent missing values by NA.

Second rule of missing information handling in R:

Always represent missing values by NA.




A list of bad ideas

Do not represent missing information with

e Adot(.)

®* An empty string ("")

e A string with a space (" ")

e Astring with a dash ("-")

e A special numeric value such as inf

e A specific number (e.g., -9, 99, 0)
e Anything else that is not NA




A quick check

You can use the dataReporter package in R to look for problems:

library("dataReporter")
testData$miscodedMissingVar

[l] |l.|| 1ni llnanll ||NaN|l llNANll |lnal| HNAH
[8] |lNal| IlIn-Fll ll-in-Fll ||_In-Fll ll_-in-Fll nm_n ||9||
[15] |l9|l

identifyMissing(testData$miscodedMissingVar)

The following suspected missing value codes enter as regular values:, -, -
inf, -Inf, ., ..., Na, NA, nan, NaN, NAN (4 values omitted). 17




Or get a full report

library("dataReporter")
makeDataReport(testData)




Evil schemes for missingness

Imagine we had a fully observed dataset, but wish to induce missing
information in one variable. How can we make data go missing?

“ country gender prevTreat
Denmark Male 0
Denmark Male 0
Denmark Male 1-2
Denmark Male 1-2
Denmark Female 0
Denmark Female 1-2

Denmark Male 1-2

© 0 N U A W N M

Denmark Male 3+

[
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Denmark Female 0

-
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Denmark Male 3+
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Denmark Male 3+
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Denmark Female 0

=
=

Denmark Male 0



Missing completely at random (MCAR)

Choose who is missing by random dice roll.

“ country gender prevTreat country gender prevTreat
Denmark Male 0 Denmark Male 0
Denmark Male 0 Denmark Male 0

Denmark Male 1-2 Denmark Male 1-2

Denmark Male 1-2 Denmark Male 1-2
Denmark Female 0 Denmark Female 0
Denmark Female 1-2 Denmark Female 1-2

Denmark Male 1-2 Denmark Male 1-2

© 0 N U A W N M

1
2
3
4
-]
7
8
9

Denmark Male 3+ Denmark Male 3+
Denmark Female 0 Denmark Female 0
Denmark Male 3+ Denmark Male 3+
Denmark Male Denmark Male

Denmark Female Denmark Female

Denmark Male Denmark Male

We lose information and hence precision (wider confidence intervals).




Missing at random (MAR)

Choose who is missing by separate random draws for males and females.
Females have missing probability 75%, males have probability 5%.

[a]
(a]

Yes
No
No
Yes
No
Yes
Yes
Yes
No
No
Yes
No
No

Underrepresentation of females may lead to biased estimates.



Missing not at random (MNAR)

Choose who is missing by looking at CC status itself. Relapsers are more
likely to have missing information.

0
(o]

Yes
No
No
Yes
No
Yes
Yes
Yes
No
No
Yes
No
No

Underrepresentation of relapsers may lead to biased estimates. And the
worst part: Whether an observation is missing depends on the very information 22




Three categories

e MCAR: The missingness is independent of all other observed or
unobserved variables. (Dice roll)

e MAR: The missingness depends on other observed variables, but not
on the missing value itself.

e MNAR: The missingness depends on the value that is missing. Or
rather: not one of the other two conditions.




Better names?

e Unrelated missingness.

e Data-dependent missingness

e Unobserved data missingness




Exercise

We will now:

e Classify each of the 8 scenarios as MCAR/MAR/MNAR
e Discuss: Would it had been possible to detect this by looking at the

data alone (i.e. not knowing why the data went missing)?




24% have missing CC information ...

1.... due to a fire in the storing facility.

2. ... because those patients were embarassed to tell the treatment facility that they had started
drinking again.

3....and they are the 24% of the patients with the most severe alcohol dependencies, and they
dropped out of the study

4. ... and they are the 24% females, and they dropped out of the study.

5. those patients all had last names starting with “A”. Their records were lost because someone
dropped a cup of coffee on that folder.

6. ... because those patients dropped out of the study since they were not drinking and felt safe
that they wouldn't start again.

7. ... and they are the 24% that have red hair. They are missing in CC because a data manager
accidentially deleted their information - and the variable containing hair color.

8. and they all had undiagnosed pre-stages to liver disease during the study and dropped out
due to illness.
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Distinguishing between MCAR/MAR/MNAR

Strategy 1: Try to rule out MCAR

If you can find a variable - or combination of variables - that gives you
information about whether CC is more or less likely to be missing, the

mechanism is not MCAR.

e Note: Statistical testing doesn't always produce the correct answer -
sometimes, we find false positives.

Strategy 2: NA

e Nothing more can be done using data and statistics alone.



We will now start looking at data with missing information.

e We have a dataset consisting of the baseline covariates from the
Elderly study and an additional variable, drinks, with the mean
number of drinks consumed per day in the month before the study
started.

e We wish to model how drinks depends on the other baseline
covariates.

e However, an evil person made some of the data go missing.
e Today’s goal is to find out what happened to the data and try to obtain
a correct analysis despite the evil scheme.




Exercise

29



Now wouldn't life be good if ...

... there were no missing data?

Perhaps use imputation to fill in the blank/missing slots in the data with

plausible values.




Simple missing information setup

Imagine that we wish to estimate the effect of X on Y, controlling for Z.

e X suffers from missing information (MCAR). Assume that we order
the observations such that X3, ..., X; have missing information,
while X 4.1, ..., X, are fully observed.

e Assume thatY and Z are fully observed.

Note: Complete case analysis would produce an unbiased, but inefficient

estimate.




n <- 200

set.seed(1331)

Z <- rnorm(n, sd = 1)

X <= Z + rnorm(n, sd = 1)

Y <= 2xX + Z + rnorm(n, sd = 2)

true_X <- X

true_xmean <- mean(X)
true_xsd <- sd(X)
true_model <- Im(Y ~ X + Z)

d <- 40
X[1:d] <= NA

X[38:43]

[1] NA NA NA -0.9404489
[5] 0.7807026 1.9016603 32




Corr: Corr:
0.859***



Mean imputation: Insert the mean (or mode) of X 4,1, ..., X,, into all
Xq1,..., X4

X_meanimp <- X

xobs_mean <- mean(X[(d+1):n])

X_meanimp[l:d] <- xobs_mean

#Compare mean for full X with mean of mean imputed X
c(true_xmean, mean(X_meanimp))

[1] -0.07813252 -0.15518740

#Compare sd for full X with sd of mean imputed X
c(true_xsd, sd(X_meanimp))

[1] 1.368721 1.240263




Compare model coefhicients

round (summary (true_model) Scoefficients,4)

Estimate Std. Error t value Pr(>|t]|)

(Intercept) -0.0532 ©.1392 -0.3822 0.7028
X 2.0756 ©.1382 15.0158 0.0000
Z 1.0260 0.2000 5.1297 OB 01010]0]

round (summary (Im(Y ~ X_meanimp + Z))S$coefficients,4)

Estimate Std. Error t value Pr(>|t]|)

(Intercept) 0.0709 0.1623 0.4371 0.6626
X_meanimp 1.7887 0.1639 10.9102 0.0000
Z 1.6266 0.2150 7.5675 0.0000

Conclusion: Do not mean impute! 35




plot(Y ~ X_meanimp, xlab = "X",
col = c(rep("red", 40), rep("yellow", 160)), col.lab = "white", col.a>»




Hot deck imputation (simplest version): For each missing value, pick and
insert a random value among the observed values X4,1,..., X,,.

X_hdimp <- X
set.seed(13)
X_hdimp[l:d] <- sample(X[(d+1l):n], size = d, replace = TRUE)

#Compare mean for full X with mean of mean imputed X
c(true_xmean, mean(X_hdimp))

[1] -0.07813252 -0.20307655

#Compare sd for full X with sd of mean imputed X
c(true_xsd, sd(X_hdimp))

[1] 1.368721 1.387267




Comparing model coefficients:

round (summary (true_model) Scoefficients,4)

Estimate Std. Error t value Pr(>|t]|)

(Intercept) -0.0532 ©.1392 -0.3822 0.7028
X 2.0756 ©.1382 15.0158 0.0000
Z 1.0260 0.2000 5.1297 OB 01010]0]

round (summary (lm(Y ~ X_hdimp + Z))S$coefficients,4)

Estimate Std. Error t value Pr(>|t]|)

(Intercept) 0.0484 0.1781 0.2720 0.7859
X_hdimp 1.2207 0.1492 8.1828 0.0000
Z 2.1195 0.2188 9.6879 0.0000

Conclusion: Don’'t do hot deck imputation! 38




plot(Y ~ X_hdimp, xlab = "X",
col = c(rep("red", 40), rep("yellow", 160)), col.lab = "white", col.a>»




Regression imputation: Fit a regression model for all the observations,
e.g., X;,=a+ 1Y, + BZ;, + ¢ tori =d+1,...,nand use this
model to predict values for the remaining Xi, ..., Xj.

obsdata <- data.frame(X = X[(d+1):n],
Y = Y[(d+1):n],
Z = Z[(d+1):n])
m_regimp <- lm(X ~ Y + Z, obsdata)
X_regimp <- X
X_regimp[l:d] <- predict(m_regimp,
newdata = data.frame(Y = Y[1l:d],
Z = 7[1:d]))




#Compare mean for full X with mean of reg. imputed X
true_xmean; mean(X_regimp)

[1] -0.07813252

[1] -0.1177343

#Compare sd for full X with mean of reg. imputed X
true_xsd; sd(X_regimp)

[1] 1.368721

[1] 1.352262




round (summary (true_model) $coefficients,4)

Estimate Std. Error t value Pr(>|t]|)

(Intercept) -0.0532 ©.1392 -0.3822 0.7028
X 2.0756 ©.1382 15.0158 0.0000
Z 1.0260 0.2000 5.1297 0.0000

round (summary (Ilm(Y ~ X_regimp + Z))Scoefficients,4)

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.0505 0.1256 0.4024 0.6878
X_regimp 2.2815 0.1264 18.0525 0.0000
Z 0©.8383 0.1807 4.6401 0.0000

Conclusion: Don’t do regression imputation!




plot(Y ~ X_regimp, xlab = "X",
col = c(rep("red", 40), rep("yellow", 160)), col.lab = "white", col.a>»




Stochastic regression imputation: Perform regression imputation, but
add noise to the predictions by sampling from the residuals from the

fitted model.

X_stocregimp <- X; set.seed(2)
X_stocregimp[l:d] <- X_regimp[l:d] +
sample(residuals(m_regimp), size = d,
replace = TRUE)




#Estimate from model with full X
round (summary (true_model) $Scoefficients,4)[2,]

Estimate Std. Error t value Pr(>|t]|)
2.0756 0.1382 15.0158 0.0000

#Estimate from model with X imputed by stochastic regression
round (summary (lm(Y ~ X_stocregimp + Z))S$coefficients,4)[2,]

Estimate Std. Error t value Pr(>|t])
2.0430 ©.1309 15.6060 0.0000

Problem: The variance is still underestimated.




plot(Y ~ X_stocregimp, xlab = "X",
col = c(rep("red", 40), rep("yellow", 160)), col.lab = "white", col.a>»




The problem with single imputation strategies

Imputing one value for a missing datum cannot be correct in general, because we
don’t know what value to impute with certainty (if we did, it wouldn’t be missing).

— Donald B. Rubin




@

Incomplete data  Imputed data  Analysis results  Pooled result

(Figure 1.6 from van Buuren 2019)
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Total variance (Rubin's rule)

It can be shown mathematically that

Total variance = U + B + Bi
m
e m is the number of imputed datasets
e [ is the variance due to sampling
e Bisthevariance due to missing values
e B % is the extra variance due to using a finite number of imputations

and the need to estimate the missing model.




MICE

Multiple imputation by chained equations: A specific algorithm
(method) for performing data analysis with missing information.

Also known as imputation with fully conditional specification (FCS).

Specifies imputation models variable-by-variable for each variable with
missing information.

[teratively updates best guesses to allow all variables (even those with

missing information) to inform the imputation of the others.




MICEinR

MICE is implemented in the mice package in R:

library(mice)

data <- data.frame(X = X, Y =Y, Z = Z)
set.seed(22)

imps <- mice(data, print = FALSE, m = 10)
fits <- with(imps, lm(Y ~ X + Z))

res <- pool(fits)

summary(res) [, c(1:3,6)]

term estimate std.error p.value
1 (Intercept) -0.007041764 0.1409787 9.602336e-01
2 X 2.072830228 0.1365646 2.759248e-30

3 Z 1.030463434 0.1992245 7.903696e-07




incomplete data imputed data analysis results pooled results

(Figure 1 from van Buuren & Groothuis-Oudshoorn 2011)




#Estimate from complete case analysis
round (summary (Im(Y ~ X + Z, data))Scoefficients,4)[2,]

Estimate Std. Error t value Pr(>|t]|)
2.0358 ©.1452 14.0252 0.0000

#Estimate from model with X imputed by stochastic regression
round (summary (lm(Y ~ X_stocregimp + Z))S$coefficients,4)[2,]

Estimate Std. Error t value Pr(>|t])
2.0430 ©.1309 15.6060 0.0000

#Estimate from mice model (default settings)
round (summary(res)[2, c(2,3,4,6)],4)

estimate std.error statistic p.value
2 2.0728 0.1366 15.1784 0]




Output from MICE

mice gives estimates of B (b), U (ubar), T' (t = std.error %), as well as
B(1+1/m)

A= —— (proportion of variance due to missing), and more
summary(res, type = "all")
term m estimate std.error statistic
1 (Intercept) 10 -0.007041764 0.1409787 -0.04994913
2 X 10 2.072830228 0.1365646 15.17839086
3 Z 10 1.030463434 0.1992245 5.17237362
df p.value riv lambda fmi

1 141.1110 9.602336e-01 0.1228197 0.1093851 0.1217452

2 126.6437 2.759248e-30 0.1540145 0.1334598 0.1468278

3 138.9950 7.903696e-07 0.1271987 0.1128450 0.1253405
ubar o) t dfcom

0.01770097 (0.001976389 (0.01987499 197

55




Variable level imputation models

e Numerical variables : Predictive mean matching (PMM). A fusion
between regression imputation and hot deck imputation: Use
regression to find a selection of plausible “donor values”, choose one
at random among them.

e Categorical variables : Logistic regression (binary) or multinomial
logistic regression (polyreg).

e Other types of variables : See ?mice: :mice for details and options.




Exercise
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Table 3.1: Estimated log odds ratios from the model of controlled consumption status using all full covariate adjustment.
The reported estimates are on log odds ratio scale and they are computed relative to the following reference category:
Treament MET; Gender male; Country Denmark; Age 60; Education none; No partner; Low ADS; Previous treatments
(. The mean log odds of having a controlled alcohol consumption in this reference group is represented by the intercept
estimate. The reported p-values correspond to two-sided z-tests of the null-hypothesis of a zero parameter value.

Estimate Std. error z statistic p-value

Intercept -0.3507 0.3050 -1.1499 0.2502
Treatment: MET+CRA 0.2028 0.1801 1.1260 0.2602
Country: USA 0.0736 0.2327 0.3164 0.7517
Country: Germany -0.0351 0.2522 -0.1392 0.8893
Gender: Female -0.5543 0.1906 -2.9085 0.0036
Age 0.0677 0.0211 3.2038 0.0014
Married or cohabiting: Yes 0.2270 0.1877 1.2094 0.2265
Severity: Intermediate -0.0777 0.2307 -0.3367 0.7363
Severity: Substantial or severe -0.2767 0.4096 -0.6755 0.4994
Education: At most 0.0518 0.2286 0.2268 0.8206

undergraduate degree

Education: Graduate or -0.4463 ).287- -1.5537 0.1202
post-graduate

Previous treatments: 1-2 0.2655 ).218 1.2140 0.2247
Previous treatments: 3+ 0.2938 308 0.9517 0.3413




We fitted five additional models:

e MiD Missing is drinking approach: Treating all missing observations
as relapsers (non-controlled consumption).

e MiCC Missing is CC approach: Treating all missing as CC.

e METiD MET is drinking approach: Treating missing observations for
patients treated with MET as drinking, while missing obsevrations
from MET+CRA-patients are treated as controlled consumption.

e METiCC MET is CC: Treating missing for MET+CRA patients as
drinking, while missing from MET-patients are treated as CC.

e MICE Multiple imputation of missing observation using all variables
from the primary model and controlled consumption information

from previous time points. 59




Estimated log odds rétio for MET+CRA relative to MET

-®- Missing and MET Is drinking, missing and MET+CRA I1s CC (METID) +@= Missing Is controlled consumption (MICC)

Complete case analysls -#- Missing Is drinking (MID)

Missing and MET 1s CC, missing and MET+CRA 1s drinking (METICC) Missing values are imputed using MICE




Statistics

Tutorial in Biostatistics
Received 3 September 2009, Accepted 14 July 2010 Published online 30 November 2010 in Wiley Online Library

(wileyonlinelibrary.com) DOIL: 10.1002/sim 4067

Multiple imputation using chained equations:
Issues and guidance for practice

Ian R. White,** Patrick Royston” and Angela M. Wood®

Multiple imputation by chained equations is a flexible and practical approach to handling missing data. We describe the
principles of the method and show how to impute categorical and quantitative variables, including skewed variables. We give
guidance on how to specify the imputation model and how many imputations are needed. We describe the practical analysis of
multiply imputed data, including model building and model checking. We stress the limitations of the method and discuss the
possible pitfalls. We illustrate the ideas using a data set in mental health, giving Stata code fragments. Copyright © 2010 John
Wiley & Sons, Ltd.
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Abstract

Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with
using multiple imputation. Imputation of partially observed covariates is complicated if the substantive
model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or
interaction terms, and standard software implementations of multiple imputation may impute
covariates from models that are incompatible with such substantive models. We show how imputation
by fully conditional specification, a popular approach for performing multiple imputation, can be modified
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