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Applications of TPC and TFCI
Petersen, Osler & Ekstrøm (2021): Data-driven model building for
life-course epidemiology. American Journal of Epidemiology.

Andersen et al. (2023). Nighttime smartphone use, sleep quality, and
mental health: investigating a complex relationship. Sleep.

Foraita et al. (2024): A longitudinal causal graph analysis investigating
modifiable risk factors and obesity in a European cohort of children and
adolescents. Scientific Reports.

Lee et al. (2023): Causal determinants of postoperative length of stay
in cardiac surgery using causal graphical learning. The Journal of
Thoracic and Cardiovascular Surgery.
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Applicability of causal discovery
Petersen, Ekstrøm, Spirtes & Osler (2023). Constructing Causal
Life-Course Models: Comparative Study of Data-Driven and
Theory-Driven Approaches. American Journal of Epidemiology.

Didelez (2024). Invited Commentary: Where Do the Causal DAGs
Come From?. American Journal of Epidemiology.

Textor (2025). Invited Commentary: When will causal structure
learning become practical?. International Journal of Epidemiology.

Gururaghavendran & Murray (2025). Can algorithms replace expert
knowledge for causal inference? A case study on novice use of causal
discovery. American journal of epidemiology.
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Alternative algorithms
Score-based methods: Heuristic search through possible (CP)DAGs,
score each model according to fit. Examples: GES (Chickering 2002),
GRASP (Lam et al. 2022), BOSS (Andrews et al. 2023).

Optimization-based methods: Try to estimate the global DAG structure
at once. Examples: LiNGAM (Shimizu et al. 2006), NOTEARS (Zheng
et al. 2018), DAG-GNN (Yu et al. 2019).

Fast-paced research field with many new algorithms being proposed
each year, these are only a very few.

Finite sample and realistic real world data performance receives much
less focus (see e.g. Bang et al. 2024).
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Software
R packages: pcalg, bnlearn, tpc, micd

Python: causal-learn

TETRAD: Point-and-click software (also available in commandline (in
Java), or via Python (py-tetrad))

See also the overview and introduction:
Andrews, Foraita, Didelez & Witte (2021). A practical guide to causal
discovery with cohort data. arXiv preprint arXiv:2108.13395
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Estimating causal effects
We can use the estimated graph for identifying causal effects, but it is
not straightforward.

Find an adjustment set that is valid for covariate adjustment in every
DAG: Perković et al. (2017, 2018), Henckel et al (2022).

Intervention calculus when the DAG is Absent (IDA) algorithm:
Bounding causal effects from a CPDAG (Maathuis, Kalisch &
Bühlmann 2009) or MPDAG (Perković et al. 2017, Fang & He 2020),
or optimal (Witte et al. 2020).

One should be aware of post-selection issues. Ongoing research but
generally a difficult problem: Strieder & Drton (2023), Chang et al.
(2024), and Gradu et al. (2025).
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Course day evaluation

https://forms.gle/eU4XEfNT4bvSzKPB9
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