class: center, middle, inverse, title-slide .title[ # To p or not to p? ] .author[ ### Claus Thorn Ekstrøm
UCPH Biostatistics ] .date[ ### May 12th, 2022
.small[
ekstrom@sund.ku.dk
]
@ClausEkstrom
.small[Slides:
biostatistics.dk/talks/
] ] --- class: animated, fadeIn layout: true ??? This slide defines a default animated fade-in slide transition --- background-image: url("pics/process.png") background-size: 45% background-position: 50% 63% ??? Epistemologi. Videnskab = skab af viden --- class: middle, center, inverse # Quiz --- You want to see if the means of two groups are different. You compare the means statistically and get a ** `\(p\)` value of 0.05** when testing at a **significance level of 0.07**. What is the conclusion? 1. You reject the null hypothesis.<br>Thus you cannot reject that the two population means are the same. 2. You fail to reject the null hypothesis.<br>Thus you cannot reject that the two population means are the same. 3. You reject the null hypothesis.<br>Thus you reject that the two population means are the same. 4. You fail to reject the null hypothesis.<br>Thus you reject that the two population means are the same. 5. Help!! --- --- # Hvad er det nu, at en `\(p\)`-værdi er? > *The `\(p\)` value is the probability of having obtained a result **at least as extreme** as the one found with our sample if the null hypothesis were true.* --- Kirkwood & Sterne -- HVIS nulhypotsen er sand<br> .yellow[OG ALLE ANDRE antagelser *også* er sande]<br> SÅ udtrykker `\(p\)`-værdien sandsynligheden for at observere en teststørrelse, der er mindst lige så ekstrem, som den i din stikprøve. -- `\(p\)`-værdien måler, hvor *overrasket* man er. --- # Hvad er problemet med `\(p\)`-værdier? Forskeren vil typisk gerne have svare på `$$P(H | D)$$` men `\(p\)`-værdien udregner `$$P(D | H)$$` ??? They try to answer the *"wrong"* question They give a very precise answer to the wrong question instead of an approxiomate answer to the right question. --- # `\(p\)`-værdien bruges forkert Som beslutningsregel: `$$p \text{-værdi} \left\{\begin{array}{ll}<0.05 & \text{forkast} - \text{"signifikant"} \\ \geq 0.05 & \text{ikke forkast} - \text{"ikke signifikant"/"ingen association"} \end{array} \right.$$` * Arbitrær tærskel * Signifikant betyder ikke relevant * Ikke-signifikant betyder ikke at `\(H_0\)` er sand eller accepteres. Vi har ikke nok evidens til at forkaste den (*"fraværet af evidens er ikke evidens for fravær"*). ??? "No association" is wrong to say binary thinking makes everything worse in that people inappropriately combine probabilistic statements with Boolean rules. --- background-image: url(pics/tea.png) background-size: 105% --- background-image: url(pics/pvalues.jpg) background-size: 100% --- # `\(p\)`-værdien indeholder to typer information .pull-left[ `\(p\)`-værdien kombinerer *effektstørrelsen* med *stikprøvestørrelsen*. Når `\(N\rightarrow\infty\)` bliver *alt* signifikant. ] .pull-right[ <img src="pics/donkey.jpg" width="100%" /> ] --- # Veterinærstudier og statistik Fra konsultationen: * Lille stikprøve * Gentagne målinger * Studerende som "klemmelus" -- Hvad er forskningsspørgsmålet? --- # Alternativer * Deskriptiv statistik * Eksplorativ statistik * Drop fokus på signifikanstest * Holder antagelserne? * Hvad er effektstørrelsen? * Pilotstudier