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Program

• Multiple linear regression

• Two-way analysis of variance
• Multi-way ANOVA

• Relation between regression and ANOVA
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Example — volume of cherry trees

Tree Diameter Height Volume Tree Diameter Height Volume
1 8.3 70 10.3 17 12.9 85 33.8
2 8.6 65 10.3 18 13.3 86 27.4
3 8.8 63 10.2 19 13.7 71 25.7
4 10.5 72 16.4 20 13.8 64 24.9
5 10.7 81 18.8 21 14.0 78 34.5
6 10.8 83 19.7 22 14.2 80 31.7
7 11.0 66 15.6 23 14.5 74 36.3
8 11.0 75 18.2 24 16.0 72 38.3
9 11.1 80 22.6 25 16.3 77 42.6

10 11.2 75 19.9 26 17.3 81 55.4
11 11.3 79 24.2 27 17.5 82 55.7
12 11.4 76 21.0 28 17.9 80 58.3
13 11.4 76 21.4 29 18.0 80 51.5
14 11.7 69 21.3 30 18.0 80 51.0
15 12.0 75 19.1 31 20.6 87 77.0
16 12.9 74 22.2
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Linear regression

Simple linear regression may describe the relation between two
variables:
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Linear regression

Regression of volume on height:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.1236 29.2731 -2.976 0.005835 **

Height 1.5433 0.3839 4.021 0.000378 ***

Regression of volume on diameter:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***

Girth 5.0659 0.2474 20.48 < 2e-16 ***

But what if both of the explanatory variables are needed in a good
model for the volume?
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Multiple regression

The multiple linear regression model with d explanatory variables is
given as

yi = α + β1xi1 + · · ·+ βdxid + ei , i = 1, . . . ,n,

where ei ∼ N(0,σ2).
It has the same form as the simple linear regression, but with extra
explanatory variables.
Three parameters in the model for the mean:

• α intercept with the y -axis when xi1 = · · · = xid = 0

• β1 and β2 are the partial slopes, giving the y if the other
explanatory variables are held constant.

The residual standard deviation, σ , also enters the model.
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Graphical display of a multiple regression
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Estimation and tests in multiple linear
regression

You have learned all the tools already

We need the entire machinery from the previous weeks for
estimation (least squares), test of hypotheses (F -tests),
confidence- and prediction intervals and model validation.

In R we use the function lm(..) for the multiple linear regression
by appending extra terms to the model.

For example
lm(Volume ~ Height + Girth)
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Transformation

If we model the tree as a cone with diameter d and height h, we
may use the formula (from geometry)

v =
π

12
·h ·d2.

We replace the constants by
parameters to get a more flexible
model

v = c ·hβ1 ·dβ2 ,

By a log-transform we get

logvi = α +β1 loghi +β2 logdi +ei , i = 1, . . . ,n

h

d
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Polynomial regression
A special application of multiple linear regression is polynomial
regression of order k

yi = α + β1xi + β2x
2
i + · · ·+ βkx

k
i + ei , i = 1, . . . ,n,

May describe complicated relations between one variable and
another.
Quadratic regression is polynomial regression of order 2

yi = α + β1xi + β2x
2
i + ei , i = 1, . . . ,n,

Note that it is the same explanatory variable, x , used in xi and x2i .
Computations in R use the function lm(..):

x2 <- x^2 # Defines a new variable

lm(y ~ x + x2)

or

lm(y ~ x + I(x^2))
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Prevalence AIDS
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Two-way analysis of variance
Two-way analysis of variance extends one-way ANOVA to more
than one explanatory variable:

yi = αg(i) + βh(i) + ei , i = 1, . . . ,n,

where α and β are the parameters corresponding to the two
categorical variables, while g and h define the “groups” for the two
variables.
Two-way (and multi-way) ANOVA is handled in R by the function
lm(..).
Example:

lm(y ~ x1 + x2)

where x1 and x2 must be defined as factors; otherwise write

lm(y ~ factor(x1) + factor(x2))

Note that there are now more hypotheses to test (using drop1()

in R)!
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Example — yield of cabbage

Four fields were each divided into plots on which cabbage was
grown. We want to investigate the effects of nitrogene applied in
the form of calciumnitrate (C), ammoniumsulfate (A), nitrate (N)
or control (K).

Yield Field 1 Field 2 Field 3 Field 4
C 70.3 72.5 79.0 86.2
A 75.5 63.0 65.4 67.7
N 85.2 80.5 83.6 92.3
K 36.7 39.6 45.5 50.5
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Inference in the two-way ANOVA

You have learned all the tools already

We need the entire machinery from the previous weeks for
estimation (least squares), test of hypotheses (F -tests),
confidence- and prediction intervals and model validation.

The only difference is the number of parameters/degrees of
freedom, but we get those from the program anyway.
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It is all linear regression

Linear regression and analysis of variance are the same
model
Factors in the model may be recoded as explanatory variables in a
multiple linear regression.
This means that the models may include quantitative as well as
qualitative explanatory variable.

To write an ANOVA model as a regression we use dummy variable

xkij =

{
1 if observation i belongs to category j for variable k
0 ellers

.
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Lecture summary: main points

• Multiple linear regression
• What can we achieve by this model?
• Interpretation, estimation and hypothesis testing

• Multi-way analysis of variance
• What can we achieve by this model?
• Interpretation, estimation and hypothesis testing

• It is all “linear regression”
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